IVC3 Series PLC

Quick Reference Manual

Thanks for choosing the programmable logic controllers (PLCs) developed and produced by INVT Auto-Control Technology (Shenzhen) Co., Ltd. Before using the PLC, read this manual carefully to understand the product features, so that you can use the product properly and make full use of its functions.

This manual briefly describes the hardware specification, features, and application methods of IVC3 series PLCs. It is a quick-start guide for the design, installation, connection, and maintenance of IVC3 series PLCs. Users can handily refer to this manual for the required information on site.

ltem	General-purpose IVC3					
Program capacity	64 ksteps					
High-speed input	200 kHz					
High-speed output	200 kHz					
Power-outage memory	64 kB					
	The CANopen DS301 protocol (master) supports a maximum of 31 stations, 64 TxPDOs, and 64 RxPDOs.					
CAN	The CANopen DS301 protocol (slave) supports 4 TxPDOs and 4 RxPDOs.					
	Terminal resistor: Equipped with a built-in DIP switch					
	Station number setting: Set by using a DIP switch or program					
	Supporting master and slave stations					
Modbus TCP	IP address setting: Set by using a DIP switch or program					
	Communication mode: RS485					
Serial	Max. baud rate of PORT1 and PORT2: 115200					
	Terminal resistor: Equipped with a built-in DIP switch					
	Standard: USB2.0 Full Speed and MiniB interface					
communication	Function: Program upload and download, monitoring, and upgrade of underlying systems					
Interpolation	Two-axis linear and arc interpolation (supported by board software V2.0 or later)					
Electronic cam	Supported by board software V2.0 or later					
Special extension module	Max. total number of special extension modules: 8					

Customer service center

INVT Auto-Control Technology (Shenzhen) Co., Ltd.

Product quality feedback sheet

	Telephone	
	Postal code	
	ongiing. Nansh	Telephone Postal code Installation date

Gaofa Technology Park, Longjing, Nanshan District, Shenz

Postal code: 518055

1 Product introduction

1.1 Model description

Figure 1-1 describes the product model.

Figure 1-1 Product model description

1.2 Appearance and structure

Figure 1-2 shows the appearance and structure of an IVC3 series main module (using $\rm IVC3\text{-}1616MAT$ as an example).

Figure 1-2 Appearance and structure

The bus socket is used to connect extension modules. The mode selection switch provides three options: ON, TM, and OFF.

1.3 Terminal introduction

The following figures show the terminal arrangement of IVC3-1616MAT.

Input term	inals:
------------	--------

0	OM	CO	DM	S/	′S	Х	0	X	2	X	1	Х	6	X1	0	X1	2	X1	.4	X1	6	
	24	ŧV	24	4V	S,	/S	Х	(1	Х	3	Х	5	Х	7	XI	1	X	13	XI	15	X	17

Output terminals:

Y	0	Y	1	Y	2	Y	3	Y	4	Y	6	Y	7	Y1	.0	¥1	2	¥1	.4	¥1	6	
	C	0	•	•	С	1	(2	Y	5	С	3	C	4	Y1	1	Y	13	YI	15	YI	17

2 Power supply specifications

Table 2-1 describes the specifications of the built-in power supply of the main module and those of the power that the main module can supply to extension modules.

Table 2-1 Power supply specifications

lte	em	Unit	Min. value	Typical value	Max. value	Remarks
Input voltage range		V AC	85	220	264	Voltage range for proper start and operation
Input current		А	/	/	1.5	90 V AC input, full-load output
	5V/GN D	mA	/	1000	/	The capacity is the sum of the internal consumption
Rated	24V/G ND	mA	/	650	/	of the main module and the load of the extension
Rated output current	24V/C OM	mA	/	600	/	modules. The maximum output power is the sum of the full load of all modules, that is, 35 W. The natural cooling mode is adopted for the module

3 Digital input/output characteristics

3.1 Input characteristics and signal specifications

Table 3-1 describes the input characteristics and signal specifications. Table 3-1 Input characteristics and signal specifications

ŀ	tem	High-speed input terminals X0 to X7	Common input terminal					
Signal inp	ut mode	Source-type or sink-type mode. You can select the mode through the "S/S" terminal.						
	Detection voltage	24V DC						
Flectrical	Input impedance	1 kΩ	5.7 kΩ					
paramet ers	Input switched on	The resistance of the external circuit is lower than 400 Ω.	The resistance of the external circuit is lower than 400 Ω.					
	Input switched off	The resistance of the external circuit is higher than 24 kΩ.	The resistance of the external circuit is higher than 24 kΩ.					
Filtering	Digital filtering	X0–X7: The filtering time can be set through programming, and the allowable range is 0 to 60 ms.						
Tunction	Hardware filtering	Hardware filtering is adopted for ports except the X0 to X7, and the filtering time is about 10 ms.						
High-spee	ed function	Ports X0 to X7 can implement multiple functions including high-speed counting, interrupting, and pulse capture. The maximum couting frequency of X0 to X7 is 200 kHz.						

The maximum frequency of the high-speed input port is limited. If the input frequency exceeds the limit, the counting may be incorrect or the system fails to run properly. You need to select a proper external sensor.

The PLC provides the "S/S" port for selecting the signal input mode. You can select the source-type or sink-type mode. Connecting "S/S" to "+24V" indicates that you select the sink-type input mode, and then an NPN-type sensor can be connected. If "S/S" is not connected to "+24V", it indicates that the source-type input mode is selected. See Figure 3-1 and Figure 3-2.

Wiring diagram of source-type input mode based on the internal power supply of the module Wiring diagram of source-type input mode based on an external auxiliary power supply

Figure 3-1 Source-type input wiring diagram

Figure 3-2 Sink-type input wiring diagram

3.2 Output characteristics and signal specifications

Table 3-2 describes the output electrical specifications. Table 3-2 Output electrical specifications

ltem	Output specification					
	Transistor output					
Output mode	The output is connected when the output state is ON,					
	and it is disconnected when the output state is OFF.					
Circuit insulation	Optocoupler insulation					
Action indication	The indicator is on when the optocoupler is drived.					
Circuit power	5–24 V DC					
supply voltage	The polarities are differentiated.					
Open-circuit	Lower than 0.1 m $1/20 \text{ V}$ DC					
leakage current	Lower than 0.1 mA/30 V DC					
Min. load	5 mA (5–24 V DC)					

	Item	Output specification			
Max. outpu t	Resistive load	Total load of the common terminals: Common terminal of the 0.3 A/1-point group Common terminal of the 0.8 A/4-point group Common terminal of the 1.6 A/8-point group			
curre Inductive nt load		7.2 W/24 V DC			
	Lamp load	0.9 W/24 V DC			
Resp	OFF→ON	Y0–Y7: ≤1 µs/higher than 10 mA			
time	ON→OFF	Others: ≤0.5 ms/higher than 100mA			
Max. o freque	output ency	Y0–Y7: 200 kHz (maximum)			
Comrr termin	ion output al	One common terminal can be shared by a maximum of 8 ports, and all the common terminals are isolated from each other. For details about common terminals of different models, see the terminal arrangement.			
Fuse	protection	No			

(1) The transistor output circuit is equipped with a built-in voltage-stabilizing tube to prevent the counter-electromotive force caused when the inductive load is disconnected. If the capacity of the load exceeds the specification requirement, you need to add an external freewheeling diode.

(2) High-speed transistor output involves distributed capacitance. Therefore, if the machine runs at 200 kHz, you need to ensure that the conducted current is larger than 15 mA to improve the output characteristic curve, and the device connected to it can be connected to a resistor in parallel mode to increase the load current.

3.3 Input/output connection instances

Input connection instance

Figure 3-3 shows the connection of IVC3-1616MAT and IVC-EH-0808ENR, which is an instance of implementing simple positioning control. The position signals obtained by the encoder can be detected by the X0 and X1 high-speed counting terminals. The position switch signals that require quick response can be connected to the high-speed terminals X2 to X7. Other user signals can be distributed among the input terminals.

Output connection instance

Figure 3-4 shows the connection of IVC3-1616MAT and IVC-EH-0808ENR. The output groups can be connected to different signal voltage circuits, that is, the output groups can operate in circuits of different voltage classes. They can be connected only to DC circuits. Pay attention to the direction of the current when connecting them.

Figure 3-4 Output connection instance

oppection instance

4 Communication guide

4.1 Serial communication

The IVC3 series main module provides three asynchronous serial communication ports, namely PORT0, PORT1, and PORT2. They support the baud rates of 115200, 57600, 38400, 19200, 9600, 4800, 2400, and 1200 bps. PORT0 adopts the RS232 level and the Mini DIN8 socket. Figure 4-1 describes the pin definition of PORT0.

		- PORT0		
	38	Pin No.	Name	Description
		3	GND	Grounding pin
		4	RxD	Serial data receiving pin (from RS232 to the PLC)
		5	TxD	Serial data transmitting pin (from the PLC to RS232)
TOP CRIRZ		1, 2, 6, 7, 8	Reserved	Undefined pin Do not connect to these pins.

Figure 4-1 Position of the mode selection switch and definition of PORT0 pins

As a specialized interface for user programming, PORT0 can be forcibly switched to the programming port protocol through the mode selection switch. Table 4-1 describes the mapping between PLC running states and PORT0 running protocols.

Table 4-1 Mapping between PLC running states and PORT0 running protocols

Mode selection switch setting	State	PORT0 running protocol
ON	Running	Depend on the user program and its system configuration. It can be the programming port, Modbus, free-port, or N:N network protocol.
TM (ON→TM)	Running	Forcibly switched to the programming port
TM (OFF→TM)	Stopped	protocol.
OFF	Stopped	If the free-port protocol is used in the system configuration of the user program, PORT0 is automatically switched to the programming port protocol after the PLC is stopped. Otherwise, the protocol set in the system is not switched.

4.2 RS485 communication

Both PORT1 and PORT2 are RS485 ports that can be connected to devices with communication functions, such as inverters or HMIs. These ports can be used to control multiple devices in networking mode through the Modbus, N:N, or free-port protocol. They are terminals fastened with screws. You can make the communication signal cables by yourself. It is recommended that you use shielded twisted pairs (STPs) to connect the ports. Table 4-2 RS485 communication characteristics

	Item	Characteristic
	Communication port	2
	Socket mode	PORT1, PORT2
RS485	Baud rate	115200, 57600, 38400, 19200, 9600, 4800, 2400, 1200bps
communication	Signal level	RS485, half duplex, non-isolation
	Supported protocol	Modbus master/slave station protocol, free communication protocol, N:N protocol
	Terminal resistor	Equipped with a built-in DIP switch

4.3 CANopen communication

Table 4-3 CAN communication characteristics

Item	Characteristic	
Protocol	Standard CANopen protocol DS301v4.02 that can be applied for master and slave stations, supporting the NMT service, Error Control protocol, SDO protocol, SYNC, Emergency, and EDS file configuration	
Master station	Supporting 64 TxPDOs, 64 RxPDOs, and a maximum of 31 stations. The data exchange area (D component) is configurable.	
Slave station	Supporting 4 TxPDOs and 4 RxPDOs Data exchange area: SD500–SD531	

Socket mode	Pluggable terminal of 3.81 mm	
Terminal resistor	Equipped with a built-in DIP switch	
Station No. setting	Set through bits 1 to 6 of the DIP switch or through the program	
Baud rate	Set through bits 7 to 8 of the DIP switch or through the program	

Use STPs for CAN communication. If multiple devices are involved in communication, ensure that the GND terminals of all the devices are connected and the terminal resistors are set to ON.

4.4 Ethernet communication

Table 4-4 Ethernet communication characteristics

	Item	Characteristic			
	Protocol	Supporting the Modbus TCP and programming			
Ethernet		port protocols			
	IP address setting	The last segment of the IP address can be set through the DIP switch or an upper computer			
	Slave station connection	A maximum of 16 slave stations can be connected simultaneously.			
	Master station connection	A maximum of 4 master stations can be connected simultaneously.			
	Socket mode	RJ45			
	Function	Program upload/download, monitoring, and user program upgrade			
	Default IP address	192.168.1.10			
	MAC address	Set in factory. See SD565 to SD570.			

5 Installation

IVC3 Series PLCs are applicable to scenarios with installation environments of standard II and pollution level of 2.

5.1 Dimensions and specifications

Table 5-1 describes the dimensions and specifications of IVC3 series main modules.

Table 5-1 Dimensions and specifications

Model	Width	Depth	Height	Net weight
IVC3-1616MAT	167 mm	90 mm	90 mm	740 a
IVC3-1616MAR				

5.2 Installation modes

Using **DIN** slots

Generally, the PLCs are installed by using DIN slots with a width of 35 mm, as shown in Figure 5-1.

Figure 5-1 Diagram of installation by using a DIN slot

The specific installation steps are as follows:

- 1. Fix the DIN slot horizontally on the installation backplate.
- 2. Pull out the DIN slot clamping buckle from the bottom of the module.
- 3. Mount the module onto the DIN slot.
- 4. Press the clamping buckle back to where it was to lock the fix the module.
- Use the stoppers of the DIN slot to fix the two ends of the module, preventing it from sliding.

These steps can also be used to install other PLCs of the IVC3 series by using DIN slots.

Using screws

For scenarios where large impact may occur, you can install the PLCs by using screws. Put the fastening screws (M3) through the two screw holes on the housing of the PLC and fix them on the backplate of the electrical cabinet, as shown in Figure 5-2.

Figure 5-2 Diagram of installation by using screws

5.3 Cable connection and specifications

Power cable and grounding cable connection

Figure 5-3 shows the connection of the AC and auxiliary power supplies.

Figure 5-3 Connection diagram of the AC and auxiliary power supplies

The anti-electromagnetic interference capability of the PLCs can be improved by configuring reliable grounding cables. When installing a PLC, connect the power supply terminal to the ground. It is recommended that you use connection wires of AWG12 to AWG16 and try to shorten the wires, and that you configure independent grounding and keep the grounding cables away from those of other devices (especially those generating strong interference), as shown in Figure 5-4.

Figure 5-4 Grounding diagram

Cable specifications

For the wiring of the PLC, it is recommended that you use multi-stranded copper wire and prepare insulated terminals to ensure the wiring quality. Table 5-2 describes the recommended wire cross-sectional areas and models. Table 5-2 Recommended cross-sectional areas and models

Cable	Coss-sectional area of wire	Recommended wire model	Cmpatible wiring terminals and heat-shrinkable tubing	
AC power cable (L, N)	1.0–2.0mm²	AWG12, 18	H1.5/14 preinsulated tube-like terminal, or hot tin-coated cable terminal	
Grounding cable (⊕)	2.0mm²	AWG12	H2.0/14 preinsulated tube-like terminal, or hot tin-coated cable terminal	
Input signal cable (X)	0.8–1.0mm²	AWG18, 20	UT1-3 or OT1-3 cold-pressed terminal, Φ3 or Φ4 heat-shrinkable tubing	
Output signal cable (Y)	0.8–1.0mm²	AWG18, 20		

Fix the processed cable terminals onto the wiring terminals of the PLC by using screws. Pay attention to the positions of the screws. The tightening torque for the screws is 0.5 to 0.8 Nm, which can be used to complete reliable connection without damaging the screws.

Figure 5-5 shows the recommended cable preparation mode.

Figure 5-5 Cable preparation diagram

Warning

Do not connect transistor output to AC circuits, such as a circuit of 220 V AC. Strictly follow the electrical parameters to design the output circuits. Ensure that no overvoltage or overcurrent occurs.

6 Power-on, operation, and routine maintenance

6.1 Power-on and operation

After the wiring is complete, check all the connections. Ensure that no foreign matters have dropped inside the housing and heat dissipation is in good conditions.

- 1. Power on the PLC.
- The POWER indicator of the PLC is on.
- Start the Auto Station software on the PC and download the compiled user program to the PLC.
- 3. After the program is downloaded and verified, set the mode selection switch to ON.

The RUN indicator is on. If the ERR indicator is on, it indicates that errors occur on the user program or the system. In this case, rectify the errors by referring to the instructions in the *IVC Series Small-sized PLC Programming Manual*.

Power on the PLC external system to perform commissioning on the system.

6.2 Routine maintenance

Pay attention to the following aspects when performing routine maintenance and inspection:

- 1. Ensure that the PLC operates in a clean environment, preventing foreign matters or dust from dropping into the machine.
- Keep the PLC in good ventilation and heat dissipation conditions.
- Ensure that the wiring is properly performed and all the wiring terminals are well fastened.

User notice

- 1. The warranty covers only the PLC machine.
- <u>The warranty period is 18 months.</u> We provide free-of-charge maintenance and repairs for the product if it is faulty or damaged during proper operation within the warranty period.
- <u>The warranty period starts from the ex-factory date of the product.</u> The machine No. is the only basis for determining whether the machine is within the warranty period. A device without the machine No. is deemed out-of-warranty.
- Maintenance and repair fees are charged in the following scenarios even the product is within the warranty period:
 - Faults are caused due to misoperations. Operations are not performed following the instructions provided in the manual.
 - The machine is damaged due to causes such as fire, flood, or voltage exceptions.
 - The machine is damaged due to improper use. You use the machine to perform some unsupported functions.
- 5. The service fees are calculated based on the actual fees. If there is a contract, the provisions stated in the contract prevail.
- Keep this warranty card. Show it to the maintenance unit when you seek maintenance services.
- Contact the local dealer or directly contact our company if you have any questions.

Customer Service Center (China)

INVT Auto-Control Technology (Shenzhen) Co., Ltd.

Address: Gaofa Technology Park, Longjing, Nanshan District, Shenzhen Postal code: 518055

Company website: http://www.invt-control.com/en/index.html

Version: V1.2 Date: 2018-08-17

All rights reserved. The content of this manual is subject to change without prior notice.