MH800 Series Electro-hydraulic Servo System

Operation Manual

(V1.1)

INVT Industrial Technology (Shanghai) Co., Ltd

Preface

INVT MH800 series electro-hydraulic servo is designed especially for hydraulic devices eg injection molding machine, casting machine, oil press, etc. It adopts high performance vector control and is featured with energy saving, high precision, high efficiency and strong durability. MH800 series servo carries abundant external extension interfaces and CAN communication interfaces for forming multi-pump parallel system and realizing hydraulic control of large-flow system.

Thanks for choosing the MH800 series electro-hydraulic servo system manufactured by Shanghai INVT Industry Technology Co., Ltd. Read this manual carefully to ensure proper operation. Please keep this operation manual in a safe place for future reference.

- This manual is suitable for the following users:
 - 1) Designer of control system
 - 2) Installation or wiring personnel
 - 3) Operation or maintenance personnel
- Below requirements must be followed when you have not read through this operation manual :
 - Installation environment must be free from moisture, corrosive gases and combustible gases;
 - Do not connect the grid power to the U, V and W terminals of the motor directly during wiring, otherwise, the drive and motor may be damaged;
 - 3) The grounding wire must be grounded in a reliable way;
 - When power is applied, do not disassemble the drive, motor, oil pump or change the wiring;
 - 5) Do not touch the cooling fins during working to avoid scald.

Our company provides all-around after-sale and maintenance service. Do not disassemble the drive, LED panel or motor enclosure by yourself. Any change or damage made to the drive will void the warranty and our company will not assume the liability for the consequences thereof.

If there is any question, please contact the distributor or customer service center of our company.

Content

Chapter	1 Safety Precautions	1			
1.1	Safety definition	1			
1.2	Safety guidelines	1			
Chapter	2 Product information	3			
2.1	Product confirmation	3			
2.2	Nameplate of the servo drive	3			
2.3	Model instruction of the servo drive	3			
2.4	2.4 Specification of servo drive				
2.5	Technical condition of servo drive	5			
2.6	External dimension of servo drive	7			
2.7	Nameplate of servo motor	8			
2.8	Model instruction of servo motor	8			
2.9	Specification of servo motor	9			
2.10	Installation dimension of servo motor	10			
Chapter	3 Mechanical installation	12			
3.1	Installation environment	12			
3.2	Installation of the drive	12			
3.3	Disassemble junction box of the drive	13			
3.4	Installation of servo motor	14			
Chapter	4 Electrical wiring	16			
4.1	Wiring precautions	16			
4.2	Selection of switch, contactor and cable diameter	17			
4.3	Terminal layout	18			
4.4	Standard wiring	19			
4.5	Instruction of jumper function	21			
4.6	Main circuit wiring	22			
4.6	6.1 Name and function of main circuit terminal (CN6)	22			
4.6	Name and function of resolver signal connector (CN2)	23			
4.6	6.3 Motor power cable and temperature resistor terminal (k series motor)	24			
4.6	6.4 Motor resolver terminal (k series motor of our company)	24			
4.6	6.5 Motor terminal (PHASE motor)	25			
4.6	6.6 Typical main circuit wiring instance	25			
4.6	6.7 Wiring process of main circuit terminals (CN6)	26			
4.7	IO signal wiring	27			
4.7	7.1 Name and function of IO signal connector (CN5)	27			
4.7	7.2 I/O output signal connector terminal (CN1A)	29			
4.7	7.3 Typical wiring diagram of control signal	29			
4.8	CAN/485 connector terminal (CN3)	30			
4.9	Name and function of serial communication signal connector (CN1B)				
4.10	Interface circuit	31			

4.10.1	Analog input circuit interfaces	31
4.11 D	igital input circuit interface	31
4.11.1	I Digital output circuit interfaces	32
Chapter 5	Display and function	33
5.1 E	xternal HMI display and operation	33
5.1.1	HMI panel interface instruction	33
5.2 F	unction of control panel keys	34
5.2.1	Key function of operation key area	34
5.2.2	Key function in direction key area	34
5.2.3	Key function of setup key area	34
5.3 E	xternal HMI function	34
5.3.1	List of monitor menus	
5.3.2	List of setup menus	
5.3.3	Commissioning menu list	53
5.3.4	Multi-pump menu list	57
5.3.5	Parameter programming menu list	60
5.3.6	Shortcut menu list	61
5.4 LI	ED display and operation	64
5.4.1	LED panel instruction	64
5.4.2	LED state bit instruction	66
5.5 LI	ED panel function	
5.5.1	Keypad operation mode	66
5.5.2	Shot-cut mode	67
5.5.3	Quick setting mode	68
5.5.4	Monitor mode	71
5.5.5	Setting mode	73
5.5.6	Commissioning mode	90
5.5.7	Multi-pump mode	92
Chapter 6	Motor parameter autotuning	95
Chapter 7	Oil pump control	97
7.1 O	il pump control mode overview	97
7.2 C	ommon pressure priority control (P control)	97
7.3 FI	ow priority control (Q control)	98
7.4 D	ual-displacement pump control	99
Chapter 8	Multi-pump parallel control	101
8.1 M	ulti-pump mode	101
Chapter 9	Running commissioning	109
9.1 C	ommissioning flowchart	109
9.2 C	ommissioning procedures	109
9.2.1	Commissioning preparations	109
9.2.2	Motor model selection	109
9.2.3	Pump model selection	110

9.2	9.2.4 Pressure feedback zero position calibration mode				
9.2	.5	Motor parameter autotuning and motor initial angle measurement	. 113		
9.2	.6	Low speed jogging and venting	. 116		
9.2	.7	Pressure calibration	. 121		
9.2	.8	Flow calibration	. 127		
9.2	.9	Hold pressure test	. 128		
9.2	.10	Calibration of overflow valve	. 129		
9.2	.11	Calibration review	. 130		
9.2	.12	Automatic operation and system performance adjustment	. 130		
Chapter	10	Alarm and solution	. 131		
10.1	Prote	ction display list	. 131		
10.2	Analy	sis on fault source	. 134		
10.3	Prote	ction causes and solutions	. 134		
10.4	Fault	rule-out flowchart	. 139		
Chapter	11 I	Naintenance and inspection	. 155		
11.1	Preca	autions	. 155		
11.2	Inspe	ction items	. 155		
11.3	Tram	egger test	. 156		
11.4	Repla	acement of the parts	. 156		
Chapter	12	Accessories	157		
12.1	12.1 Accessories model list				
12.2					
12.3					
12.4					
12.5	Exter	nal HMI options	. 163		
Chapter	13 (Contact us	164		

Chapter 1 Safety Precautions

Read this manual carefully and follow all the safety precautions before moving, installing, operating and servicing the product. If you ignore the safety precautions, physical injury or death may occur, or damage may occur to the devices.

If any physical injury or death or damage to the devices occurred due to user's ignoring of the safety precautions in the manual, our company will not be responsible for any damages thereof and we are not legally bound in any manner.

1.1 Safety Definition

The precautious related to safety operations are classified into "Danger", "Warning" and "Note".

Danger: This mark indicates the potential danger which may cause serious physical injury or death if operation requirements are not followed.

Warning: This mark indicates the potential danger which may cause physical injury or device damage if operation requirements are not followed.

NOTE: This mark indicates the potential danger which may cause physical injury if operation requirements are not followed.

1.2 Safety Guidelines

	 The installation and maintenance work can be carried out by trained and qualified professionals only.
	2. Do not check the wiring or replace any component when the power is
	applied. Before wiring and checking, confirm all the input power sources are
	disconnected, and wait for at least 10 minutes or confirm the DC bus voltage is
	less than 36V.
	3. Use insulation protection tools during inspection, otherwise electric shock or
77	physical injury may occur.
	4. Connect the grounding wires in a reliable way and the wiring work can be
	carried out by professionals only, otherwise electric shock or fire may occur.
	5. Do not install the motor, brake resistor or the drive near the combustible
	objects, otherwise fire may occur.
	6. Do not refit the product unless authorized, otherwise electric shock, fault,
	burn or fire may occur.
	1. When carrying the motor, do not pull up the connection part of the aviation
	plug to avoid damage to the electrical connection parts and physical injuries
	caused by the falling of motor.
	2. When installing the motor, do not knock on the motor to avoid damage to the
	precision components or adverse impact on the precision.
	3. During full load operation, the surface temperature of this servo motor may

	reach 100°C, which is within the allowed range but may cause danger of scald,				
	therefore, motor should be installed in a place where it is hard for human				
	beings or animals to access.				
	4. As the external brake resistor may become hot when motor brakes				
	frequently, the cooling air ducts must be in good condition. It is recommended				
	to install the external brake resistor in a place outside the control cabinet (eg in				
	the air outlet of the ventilator on the top) and take reliable preventative				
	measures against waterdrops and human contact; if it must be installed inside				
	the cabinet, it should be installed near the air outlet of the ventilator on the top				
	and far away from other components.				
	5. Ensure to check all the external connection cables before the initial power				
	up to avoid major accidents caused by wrong wiring.				
	6. The motor should carry no load during initial switch-on, and depending on				
 the operation situation, switch off the enabling anytime if necessary. 7. Start or stop the servo system by enabling instead of switching on/o 8. This product carries electrolytic capacitor, integrated circuit, epopetc., all of which should be disposed as industrial waste when disposed as industrial waste waste when disposed as industrial waste when disposed as industrial waste waste when disposed as industrial waste wast					
					otherwise, physical injury or environmental pollution may occur.
					1. Ensure the drive is free from physical shock and vibration during moving and
					installation; do not hold the product by its front cover only to avoid fall off.
	2. Users must prevent the screws, cables and other conductive objects from				
	falling into the drive.				
	3. R, S and T are power input terminals, while U, V and W are output motor				
NOTE	terminals. Connect input power cables and motor cables correctly; otherwise				
	the drive may be damaged.				
	4. Before using the drive, ensure its front cover or junction box is closed,				
	otherwise electric shock may occur.				
	5. Tighten the screws with proper torque during installation and wiring.				
	6. Do not carry out insulation voltage withstand test on the drive; do not use				
	megameter to test the control circuit of the drive.				

% For application sites susceptible to occasional product faults, namely the occasional fault may cause major accident or loss, please take extra consideration on the device safety.

% The manufacturer, retailer and service provider will not assume any correlated loss or joint liability caused by the servo system faults, excluding the servo system itself.

Chapter 2 Product Information

2.1 Product Confirmation

Confirm the following items upon receiving the products.

Items To Be Confirmed	Remark
Iconsistent with the product models you	Confirm by the "model" column on the nameplate of
Whether the rotating shaft of the servo motor can run smoothly?	The rotating shaft should be able to be rotated manually,
Whether there is any damage?	A cosmetic check on the product to ensure no damage is caused during shipment, etc.
Whether the attachments and materials are	Check the attachments, certificate of qualification and
complete?	the warranty certificate according to the packing list.

If any inconformity occurred, contact the retailer or the sales agency of our company immediately.

2.2 Nameplate of the Servo Drive

2.3 Model Instruction of the Servo Drive

SV	-MH800	-5R5	-33	-S	00
Servo product	Electro-hydraulic product series	Power range 4R4: 4.4KW 5R5: 5.5KW 7R5: 7.5KW 011: 11KW 015: 15KW 018: 18KW 025: 25KW 030: 30KW 037: 37KW 045: 45KW		S: Standard type N: EtherCat bus type	Extension code 00: No differentiation 01: Chende 02: Beston

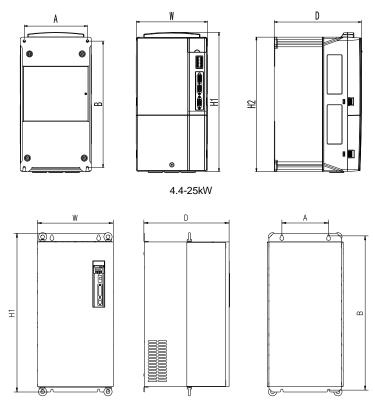
SV	-MH800	-5R5	-33	-S	00
		055: 55KW			
		075: 75KW			
		095: 95KW			
Basic product model information					
(Software display)					

2.4 Specification of the Servo Drive

Drive model SV-MH800-	4R4-33-S00	5R5-33-S00	7R5-33-S00	011-33-S00	015-33-S00
Applicable motor capacity [kW]	4.4	5.5	7.5	11	15
Rated output current [Arms]	13	18	22	26	30
Rated input current [Arms]	18	24	28	32	37
Max output current [Arms]	25	35	46	53	64
Input power		AC380V(-15%)	- 440V(+10%)	47Hz – 63Hz	
Weight	6.5Kg	7.0kg	9kg	9.5kg	9.5kg
Regenerative brake resistor		40Ω	500W		15Ω500W

Drive model SV-MH800-	018-33-S00	025-33-S00	030-33-S00	037-33-S00	045-33-S00
Applicable motor capacity [kW]	18	25	30	37	45
Rated output current [Arms]	38	50	64	80	99
Rated input current [Arms]	47	60	75	94	109
Max output current [Arms]	95	113	141	190	255
Input power		AC380V(-15%)	- 440V(+10%)	47Hz – 63Hz	
Weight	11.5Kg	11.5kg	30kg	32kg	51kg
Regenerative brake resistor	15Ω (500W	10Ω	2000W	Connect two 10Ω 2000W resistors in parallel

Drive mode SV-MH800-	055-33-S00	075-33-S00
Applicable motor capacity [kW]	55	75
Rated output current [Arms]	123	156
Rated input current [Arms]	135	166
Max output current [Arms]	283	318
Input power	AC380V(-15%) – 440V(+10%) 47Hz – 63Hz	
Weight	52 Kg	67Kg
	Connect two 10Ω	Connect two 30Ω 2000W resistors in
Regenerative brake resistor	2000W resistors in	parallel, it is necessary to install brake
	parallel	unit DBU100H-060-4


2.5 Technical Condition of Servo Drive

	Control mode		3PH full-wave rectification, IGBT PWM control sine ware
			current drive mode
	Max output frequency		400 Hz
	Motor po	sition sensor	Resolver resolution: 4096/rev
		Application/ storage temperature	-20 – +55 °C (derating is needed if the temperature is above 45°C)/ –20 – +85 °C
	Application	RH	Below 95%RH (no condensation)
	condition	Air	Indoors (no sunlight), no corrosive gases, combustible gases, oil gases or dust
		Elevation	Below 2000m
	Prote	ction level	IP20
	Cooling mode		Forced air cooling
Basic specifica tion		Input	Six inputs: ①servo enable (S-ON); ② alarm clear (ALM- RST); ③4 external control input interfaces(I1, I2, I3, I4). Refer to 4.7 for detailed function
	Digital signal	Output	Four opto-coupler outputs:① alarm output(ALM); ② drive ready(S-RDY); ③ Refer to <u>4.7</u> for the function of control output interface; One relay output; displacement switching control of dual-displacement pump (O1)
		Input	Three inputs 10-bit A/D (AIN1, AIN2, AIN3)
	Analog signal	Output	Two outputs 10-bit D/A (ANOUT1, ANOUT2), users can set internal parameter output via LED panel or external HMI
	Power	Output	Provide 15V reference power to the external
	Communi cation function	CAN communication RS485	Communicate with upper PC; carry out parameter setup and drive control; command reference and parameter save, etc.
	LED disp	lay panel and	6-bit LED display, four function keys

	keypad				
		External HMI realizes communication with the drive,			
	External HMI	parameter setup, drive control, command reference and			
		parameter save via RS485 port.			
	Control mode	Select the mode via parameter setup: ①process control;			
	Control mode	@speed control			
		Hydraulic control command input: can be set to analog			
	Control input	input, CAN communication or RS485 communication			
	Control input	Speed command input: CAN communication or RS485			
		communication			
	Multi-pump parallel control	Can control 16 pumps; three working modes (multi-pump,			
		composite, multi-mode)			
	Pressure control precision	±1bar(screw pump)			
	Flow control precision	±0.5%FS			
Control	Pressure control step	≤100ms flow reference>70% (screw pump)			
function	response	2 rooms now relevence>70% (screw pump)			
perform	Speed step response	≤50ms feedback pressure is less than 10bar			
ance	during speed control	-200113 10000 pressure 13 1835 [11811 1008]			
anoc	Flow correction function	Carry out pressure calibration based on the characteristics			
		of various pumps			
	Speed command input	RS485, CAN communication			
	Speed control precision	±0.5%			
	Torque response time	≤2ms			
		MH800-4R4-33,MH800-5R5-33,MH800-7R5-33,MH800-01			
		8-33,MH800-030-33,MH800-037-33, MH800-045-33,			
	Overload capacity	MH800-025-33, MH800-075-33: lasts 5m for 141% of rated			
	Ovential capacity	current; MH800-011-33,MH800-015-33, MH800-055-33:			
		lasts 5m for 130% of rated current; for the max output			
		current, lasts 30s for all models.			
		Overcurrent, DC overvoltage, DC undervoltage, brake			
Protecti	Hardware error	resistor damage, module over-temperature, pressure			
on		sensor fault, FWD/REV overspeed, brake overload, etc.			
function	Software error	Software fault, task re-entry, etc.			
	Alarm record memory	Can store 5 alarm records			

% If the actual temperature of the application site exceeds 45°C, derate by 3% for every additional 1°C, in addition, the servo drive cannot be used in the environment above 55°C. For cabinet installation, the ambient temperature of the servo motor is the air temperature inside the cabinet.

2.6 External Dimension of Servo Drive

The external dimension of the servo drive is as below:

Model	External Dimension			Installation Dimension		Diameter of Installation Bore	
Model	H1 (mm)	W (mm)	D (mm)	A (mm)	B (mm)	(mm)	
	(11111)	(11111)	(11111)	(1111)	(11111)		
SV-MH800-4R4-33-S-00	332 170	208	151	301	M5(φ6)		
SV-MH800-5R5-33-S-00	552	170	200	151	501	₩3(ψ0)	
SV-MH800-7R5-33-S-00							
SV-MH800-011-33-S-00	342 230	230	208	210	311	M5(φ6)	
SV-MH800-015-33-S-00							
SV-MH800-018-33-S-00	107	055	245	007	237 384	MO(=7)	
SV-MH800-025-33-S-00	407	255		237		Μ6(φ7)	

Model	External Dimension			Installation Dimension		Diameter of Installation Bore	
wodei	H1	w	D	A B		(mm)	
	(mm)	(mm)	(mm)	(mm)	(mm)	(1111)	
SV-MH800-030-33-S-00		070	005	400	540	MO(=7)	
SV-MH800-037-33-S-00	555	555 270	325	130	540	M6(φ7)	
SV-MH800-045-33-S-00		554 000	554 000		000	505	
SV-MH800-055-33-S-00	554	554 338	329	200	535	M8(φ9.5)	
SV-MH800-075-33-S-00	680	325	365	200	661	M8(φ9.5)	

2.7 Nameplate of the Servo Motor

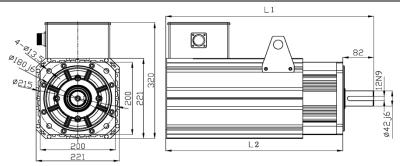
Туре:			CE
UN:	v	PN:	
IN:	A	TN:	N-m
Kt:	N-m/A	пм/пмах:	rpm
Insulation	Class:	Protective Class	

2.8 Model Instruction of the Servo Motor

K 038 F 18 - C 18 P- 33 R 1 E- A 1 2 3 4 5 6 7 8 9 10 11 12

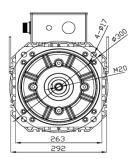
① Servo motor series	
Deted termus	038-38N.m
② Rated torque	111-111N.m
	F-Air cooling
Opeling method	N-Natural cooling
③ Cooling method	W-Water cooling
	Y-Oil cooling
① Determination (an and)	18-1800 rated rotary speed/100
④ Rated rotary speed	15-1500 rated rotary speed/100
5 Production line code	
	11-114mm
6 Flange diameter	18-180mm
	25-250mm
⑦ Shaft extension type	P- Flat key

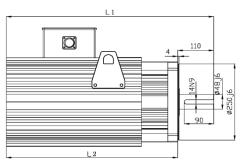
	G-Principal axis
	N-Internal spline
	W-External spline
	33-3-phase 380V input voltage
8 Rated input voltage	32-3-phase 220V input voltage
	12-single-phase 220V input voltage
	R-Resolver
9 Feedback device type	A-Incremental encoder
	1-1 antipode
10 Pole pairs	3-3 antipode
	A-10 antipode
(1) Droke mede	E-Without braking
(11) Brake mode	B-With braking
(12) Special configuration	


2.9 Specification of the Servo Motor

Model	K038F18 C18P-33R1	K058F18 C18P-33R1	K072F18 C18P-33R1	K091F15 C18P-33R1	K111F15 C18P-33R1	K132F18 C18P-33R1	K187F18 C25P-33R1	K235F2 0C25P-33R	K341F18C 25P
	E-A	1E-A	-33R1E-A						
Rated outpour power kW	7.5	11	13	15	18	25	35	50	61
Max output power kW	18	28	33	39	50	63	91	125	152
Counter- emf Vrms /1000rpm	180	182	180	200	237	198	167	147	142
Rated torque Nm	38	58	72	91	111	133	187	235	341
Max torque Nm	120	174	220	275	306	400	487	705	975
Rated current A (rms)	14	20	25	30	35.2	49	74.6	113	155.3
Max current A (rms)	56	76	88	102	97	147	194	339	443
Rated speed rpm	1800	1800	1800	1500	1500	1800	1800	1800	1800
Max speed rpm	2500	2500	2500	2200	2200	2500	2500	2500	2500

Torque	0.0		0.0		0.00	0.47	0.50		
parameter Nm/Arms	2.8	2.9	2.8	3.2	3.86	3.17	2.58	2.3	2.2
Voltage		•		•			•	•	•
level V					380				
(rms)									
Rated time					Continuous				
Heat									
resistance					F				
level									
Insulation									
voltage		AC1800V 1m <10mA							
withstand									
Insulation		D040001/ sl ss 50110							
resistor		DC1000V, above 50MΩ							
Vibration									
level		<15um							
Protection		Fully closed cells calling IDE4(except for sheft page through $z = 1$)							
level	Fully-closed self-cooling IP54(except for shaft pass-through part)								
Anti-vibrati									
on	Withstand	vibration test	at level 1 ar	nd level 2 en	vironment co	nditions stip	ulated in tab	le 4.26 in GB	/T 7345-94
performance									
Storage		-25 − +85 °C							
temperature		-20 - 700 C							
Ambient		-20 – +45 °C							
temperature		20 - 140 0							
Ambient				20% – 9	5% (no conde	ensation)			
RH					,	• /			
Excitation				Perm	anent magne	t type			
mode					5				
Installation					IMB5				
mode									
Position				11	evel of resolv	/er			
detection									


2.10 Installation Dimension of the Servo Motor


1) Servo motor dimension of K038F18C18P - K132F18C18P

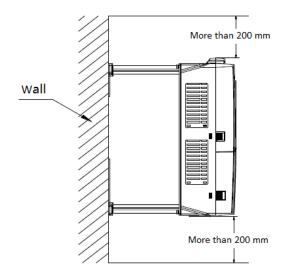
	Length(mm)			
Motor Model	L1	L2		
K038F18C18P	412.5	330.5		
K058F18C18P	447.5	365.5		
K072F18C18P	482.5	400.5		
K091F15C18P	517.5	435.5		
K111F15C18P	552.5	470.5		
K132F18C18P	622.5	540.5		

2) Servo motor dimension of K187F18C25P, K235F20C25P, K341F20C25P

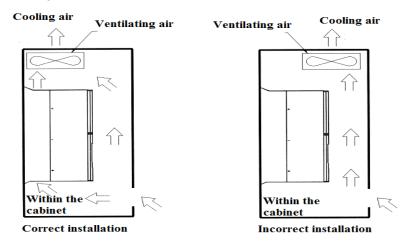
Mater Madel	Length(mm)		
Motor Model	L1	L2	
K187F18C25P	647	537	
K235F20C25P	727	617	
K341F18C25P	845	735	

Chapter 3 Mechanical Installation

3.1 Installation Environment

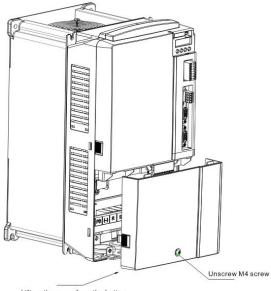

In order to ensure perfect performance and long-term service life, install MH800 servo drive in below recommended environment to ensure the drive is free from damages.

	1) Avoid direct sunlight and do not use in outdoor environment directly.						
	2) Do not use in the environment where there is corrosive gas or liquid.						
	3) Do not use in the environment where there is oil mist or water splash.						
	4) Do not use in the environment where there is salt mist.						
	5) Do not use in the environment where there is raindrops or humidity.						
	6) Filtering devices must be installed if there are metal powders or floating						
	fibers in the air.						
Note	7) Do not use in the environment where there is mechanical shock or vibration.						
Note	8) If the ambient temperature is above 55°C, proper measures must be taken to						
	lower the temperature.						
	9) Fault may occur to the device if the ambient temperature is too cold or too						
	hot. It is recommended to use it within -20°C – +55°C.						
	10) Away from power noise eg electric welding machine and large-power						
	devices.						
	11) Radioactive materials will impact the usage of the device.						
	12) Away from combustible objects, diluents and solvents.						


3.2 Installation of the Drive

- The installation direction should be vertical to the wall direction, and the upper and lower part of the drive should reserve enough space (larger than 200mm) for ventilation and cable connection, thus facilitating heat dissipation and operation;
- 2) Adopt natural convection mode or the fan to cool down the servo drive;
- 3) Fix the servo unit firmly onto the installation surface through the four installation holes.
- 4) When multiple drives are installed inside the machine cabinet:
 - The front side of the servo drive (installation side of the LED panel) should face the operation staff;
 - b) The installation position of the ventilator inside the cabinet must be proper to ensure the drive can be cooled down through the fan and natural convection; if the installation position is improper, the ambient temperature of the drive may rise and the cooling effect will be impacted;
 - c) During parallel installation, reserve more than 50mm space on both sides horizontally and more than 200mm space on both sides vertically. In addition, install cooling fan on the upper part of the servo unit. Keep the temperature inside the control cabinet even to prevent overheat of part of the servo unit;

Installation diagram of the drive


Installation diagram of the ventilator inside the cabinet

3.3 Disassemble Junction Box of the Drive

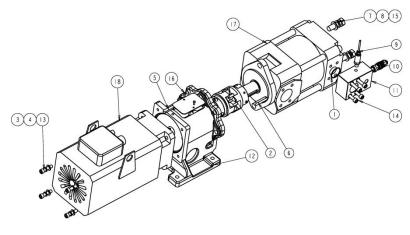
Disassemble the junction box of servo drive: (take SV-MH800-011-33-S00 as an example)

- 1. Unscrew the two screws used to fix the junction box and take off the screws;
- 2. Pull out the junction box.

Lift up the cover from the bottom

Install junction box of servo drive: (take SV-MH800-011-33-S00 as an example)

- 1. Place the junction box into the convex groove of the system and push it to match with the gap of the shell;
- 2. Tighten the two screws used to fix the junction box.


3.4 Installation of the Servo Motor

Install the motor according to below installation instruction to ensure a safe and stable operation of the servo motor.

	1. The servo motor can be installed horizontally or vertically.
	2. It is recommended to use coupling when connecting to machinery. The shaft
	center of the servo motor should be in the same linear with that of the machinery,
	otherwise vibration, damage to the bearing or encoder may occur.
	3. There is positioning requirement on the installation of feedback component
	(optical encoder, resolver), namely there is fixed relative position between the
Note	feedback component and motor rotor/stator, which cannot be disassembled or
	replaced by the users.
	4. Do not apply "tension" on the wire, especially the delicate core wires of the
	signal cable. Do not stretch the wires too tight during wiring (usage).
	5. During installing the motor, avoid direct shock on the bearing to prevent the
	precision parts (optical encoder, resolver) on the bearing from being damaged or
	deteriorated.

The installation procedures of the motor and pump are listed below:

- Connect the flat key to the pump and cover up with half of the coupling, and insert the bolt without screwing it tight;
- Connect the flat key to the motor and cover up with the other half of the coupling, then insert the bolt without screwing it tight;
- 3) Connect the pump to the motor bracket and screw tight the bolts after confirming the direction;
- 4) Connect the motor to the motor bracket and screw tight the bolts after confirming the direction;
- Adjust the clearance of the flexible coupling to 2 3mm and screw tight the bolts on both ends; ensure there is no abnormal noise when rotating manually;
- 6) Put the motor, motor bracket and connection units of the pump in the proper installation place, and determine the screw holes in the holder based on the screw holes on the bracket.
- 7) Fix the bolt and screw it tight.

- ①O-type rubber seal ring; ②Coupling component;③Spring washer;④Flat washer;
- $\textcircled{\sc b} Motor \ flat \ key; \textcircled{\sc b} Oil \ pump \ flat \ key; \textcircled{\sc c} Spring \ ring; \textcircled{\sc b} Flat \ washer \ ring; \textcircled{\sc b} Pressure \ sensor;$
- $@ {\sf Assembled thread overflow valve;} (1) {\sf Integrated block oil outlet plate;} (2) {\sf Motor bracket;} \\$
- (B)Hexagon socket cap screws; (H)Hexagon socket cap screws; (B)Hexagon bolt;
- 16 Cross recessed round head screw;17 Oil pump;18 Servo motor

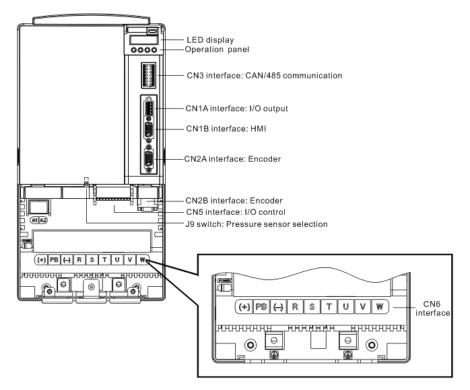
Chapter 4 Electrical Wiring

4.1 Wiring Precautions

	1. Wiring can be done by professionals only as improper wiring may cause
	electric shock or fire.
	2. MH800 series servo drive can be connected to industry-purpose power
	cables directly, namely transformer is not used for isolation. Users must use the
	breaker or fuse which is specific for wiring to prevent crossed electric shock
	from being generated by the servo system.
	3. MH800 series servo drive does not carry built-in grounding protection circuit.
	Please configure with the current leakage breaker which carries overload and
	short circuit protection function, or the current leakage breaker used specifically
	for grounding protection which matches with the wiring-specific breaker.
	1. It is recommended to adopt A, B or C connection mode (grounding resistor is
	below 10 $\!\Omega)$ and single-point grounding is a must. If the servo motor and
	mechanical firmware insulates with each other, ground the servo motor directly.
	2. Use thick cables for grounding wiring if possible (above 2.0mm ²).
	3. Currently, most of the leakage protection switches are electronic current
	leakage breaker, and the internal leakage detection and process circuit of
	different breaker brands vary enormously, which causes different
	anti-interference capacity of the breaker. It is recommended to use the leakage
	breaker with strong anti-interference capacity eg Chint.
	4. Separate cables with strong electricity eg the power cable and servo motor
NOTE	input cable from the signal wires at a distance of more than 30cm. Do not put
	them or bundle them together.
	5. The welding machine and electrical discharge machine cannot share the
	same power source, and even so, if there is high frequency generator nearby,
	connect noise filter to the input side of the power cable.
	6. Users must install surge suppressor on the coils of the relay, solenoid and
	electromagnet contactor.
	7. Install the input command device and noise filter near the servo unit to
	prevent mal-action caused by the noise.
	8. The lead wire diameter, switch capacity and contactor capacity must be
	properly selected. Refer to Selection of switch, contactor and cable diameter.

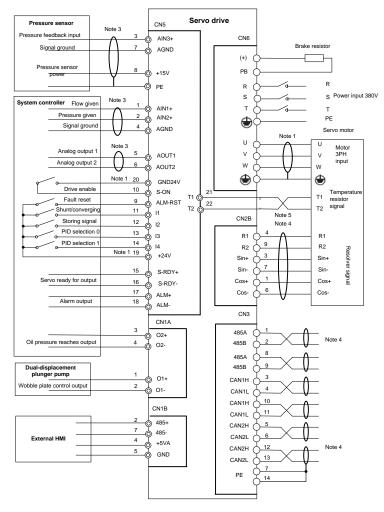
X Improper wiring may lead to system fault or potential physical injuries.

Drive Model	Power Inlet Discon	AC Contactor AC3 Rated	Main Circuit Recommended Cable Max				Control Circuit Max Cable
	nect Switch (A)	Working Current (400V) (A)		s-section((+),(-), PB Cable	, í		Cross-section (mm ²)
SV-MH800-4R4-33-S00	40	25	2.5	2.5	2.5	16	1.5
SV-MH800-5R5-33-S00	40	25	4	2.5	4	16	1.5
SV-MH800-7R5-33-S00	63	32	10	4	10	25	1.5
SV-MH800-011-33-S00	63	32	10	4	10	25	1.5
SV-MH800-015-33-S00	63	50	10	6	10	25	1.5
SV-MH800-018-33-S00	100	80	16	6	16	35	1.5
SV-MH800-025-33-S00	100	80	16	6	16	35	1.5
SV-MH800-030-33-S00	125	95	25	10	25	70	1.5
SV-MH800-037-33-S00	160	115	25	10	25	70	1.5
SV-MH800-045-33-S00	200	170	35	16	35	120	1.5
SV-MH800-055-33-S00	200	170	35	16	35	120	1.5
SV-MH800-075-33-S00	250	230	50	16	50	120	1.5

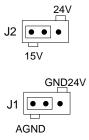

4.2 Selection of the Switch, Contactor and Cable Diameter

The recommended cable dimension for main circuit can be used in the environment where the temperature is below 40°C and wiring distance is below 10m. If the environment temperature or wiring distance exceeds above limits, enlarge the cable dimension. It is recommended to use 600VIV plastic insulated cable;

Max cable cross-section means the max cross-section limited by the connection terminal dimension;


Brake resistor carries cables by itself, it it needs to be lengthened, select cables according to above table.

4.3 Terminal Layout



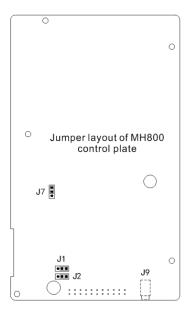
Terminal Name	Function
CN1A	I/O output signal connector
CN1B	External HMI connector
CN2A	Encoder (resolver) connector
CN2B	Encoder (resolver) connector
CN3	CAN/485 connector
CN4	Reserved
CN5	I/O control signal connector
CN6	Main circuit terminal

4.4 Standard Wiring

Note 1: In above wiring diagram, the digital input signal adopts system controller power drive, and the 24V power terminal on the CN5 connector should be connected to external power source. Users can use the internal pressure sensor power of the drive to jump to 15V side via J1 to connect +25V to 24V, or jump to 15V via J2 to connect AGND to GND24V. In default setting, J1 and J2 of the drive jump to 15V and the pressure sensor power is adopted.

Note 2: The pressure sensor power of this drive is 15V, which accepts the pressure signal whose voltage signal is 0 - 10V or 1 - 15V (can be set by J9). Refer to <u>4.5</u> and <u>4.10.1</u> for details.

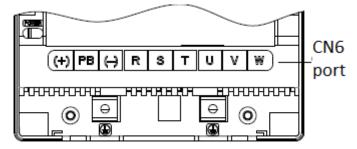
Note 3: It is recommended to adopt shielded cables for all the analog signal drive cables and motor 3PH input cables to prevent the drive from being impacted by interference.

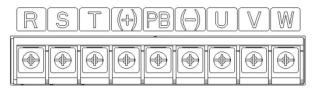

Note 4: The resolver and communication cable must use twisted shielded pair with shielded layer being grounded. The both ends of the communication cable should be added with terminal matched resistor. The CAN communication signal connector of this drive carries built-in $10k\Omega$ terminal resistor and the 485 communication signal connector carries built-in $1k\Omega$ terminal resistor.

Note 5: It is recommended to use twisted pair to prevent the motor temperature sampling from being impacted by interference. This drive supports two kinds of sampling of motor temperature sensor, namely KTY84 and Pt1000. Users can select the temperature sensor type to be supported via setting motor temperature sensor parameters.

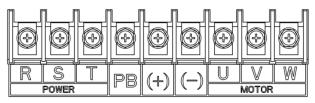
Note 6: AGND terminal can be connected to PE via J7 on the control board, or connected to capacitor via resistors. If the middle pin and PE pin of J7 is short connected, then this grounding mode is suitable for SV-MH800-4R4-33-S00, SV-MH800-5R5-33-S00, SV-MH800-7R5-33-S00, SV-MH800-011-33-S00, SV-MH800-015-33-S00 and SV-800-075-33-S00 drives.

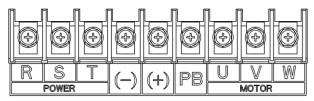
Note 7: When analog output and digital output ports are used, sufficient output load resistor must be ensured to make the output current to be below specified value.

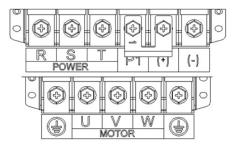

4.5 Instruction of Jumper Function


No.	Position	Function	Position	Function
J1	••	Digital input signal of Internal pressure sensor power drive; connect +15V to +24V	•	Digital input signal of external power drive; connect +15V to +24V
J2	•	Digital input signal of internal pressure sensor power drive; connect AGND to GND24V	•	Digital input signal of external power drive; disconnect AGND from GND24V
J7	C D PE	Connect AGND directly to PE	C	AGND terminal connects to PE via resistors and capacitors
9L	□ 7	0–10V output voltage pressure sensor	[]-,₹	1–5V output voltage pressure sensor

4.6 Main Circuit Wiring


4.6.1 Name and Function of Main Circuit Terminal (CN6)

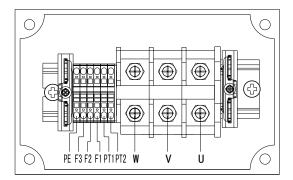

4.4kW – 15kW main circuit terminal diagram


18kW – 25kW main circuit terminal diagram

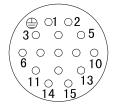
30kW – 37kW main circuit terminal diagram

45kW – 55kW main circuit terminal diagram

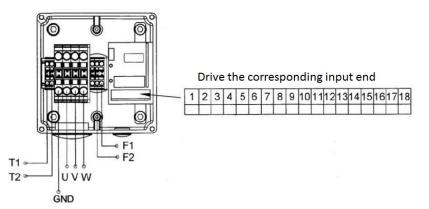
75kW main circuit terminal diagram


Terminal Name	Terminal Symbol	Function
Main circuit power input terminal	R, S, T	AC380V(-15%) – 440V(+10%) 47Hz – 63Hz
Servo motor connection terminal	U, V, W	Connect to servo motor
Grounding terminal	\oplus	Connect to power grounding terminal and motor grounding terminal, carry out grounding
External brake resistor connection terminal(with PB terminal for models under 55kW)	(+), PB	Connect external brake resistor between (+) and PB
DC reactor terminal (P1 terminal is included in models above 75kW)	P1, (+)	P1 and(+) connect to external DC reactor

4.6.2 Name and Function of Resolver Signal Connector (CN2A, CN2B)

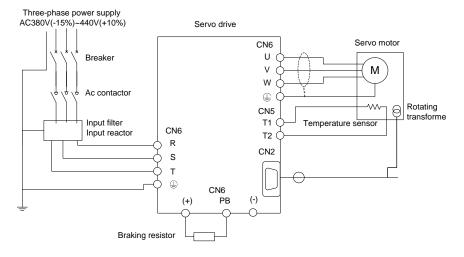

Signal Name	Code	Pin No.	Function
Resolver sine input+	Sin+	CN2-3	Deschuer eine feedheelt einel
Resolver sine input-	Sin-	CN2-7	Resolver sine feedback signal
Resolver cos input+	Cos+	CN2-1	
Resolver cos input-	Cos-	CN2-6	Resolver cosine feedback signal
Excitation signal+	R1	CN2-4	Deschuer excitation eignel
Excitation signal-	R2	CN2-9	Resolver excitation signal

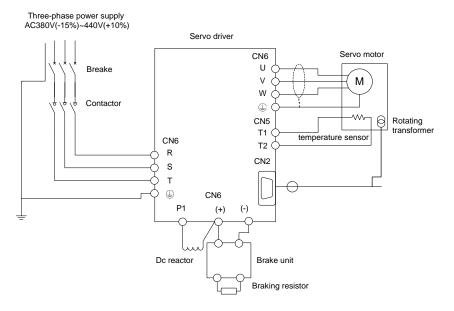
4.6.3 Motor Power Cable and Temperature Resistor Terminal (k series motor of our company)


No.	Name	Definition		
1	U			
2	V	Motor 3PH input		
3	W			
4	PT1	— , , , ,		
5	PT2	Temperature resistor		
6	F1	5 2001/ 4.0		
7	F2	Fan power 220V AC		
9	PE	Grounding		

4.6.4 Motor Resolver Terminal (k series motor of our company)

No.	Name	Definition
1	NC	Null
2	R1	Excitation signal+
3	R2	Excitation signal-
4	Sin+	Resolver sine output+
5	Sin-	Resolver sine output-
6	Cos+	Resolver cosine output+
7	Cos-	Resolver cosine output-
8 – 15	NC	Null


4.6.5 Motor Terminal (PHASE motor)


Terminal	Definition	Terminal	Definition
U		1	R - revolver excitation input signal-
V	Motor 3PH input	2	R + revolver excitation input signal+
W		3	Sin-revolver sine output signal-
GND	Motor grounding	4	Sin + revolver sine output signal+
T1	Motor internal temperature	5	Cos-revolver cosine output signal-
T2	resistor	6	Cos + revolver cosine output signal+
F1	Motor internal cooling fan	7 – 14	Null
F2	220VAC power input	15	PTC+
17 – 18	Null	16	PTC-

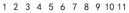
4.6.6 Typical Main Circuit Wiring Instance

	1. Each cable insert port of the connector can be inserted with one cable only.
	2. Motor 3PH cable should use shielded cable, one end of which should
NOTE	connect to the ground wire of the drive and the other end should connect to the
NOIL	ground wire of the motor connector.
	3. The screws should be rotated to a proper degree of tightness to ensure
	smooth connection.

Main circuit wiring diagram for models above 75kW

4.6.7 Wiring Process of Main Circuit Terminals (CN6)

1) Connect input power cables to the input terminals R, S and T of the drive respectively, and connect the grounding conductor of the input power cable to any grounding screw (PE) of the drive, then


rotate the screw to a proper degree of tightness to ensure smooth connection;

2) Connect the 3PH input terminals W, V and U of the motor to the W, V and U terminals of the drive servo motor, then rotate the screw to a proper degree of tightness to ensure smooth connection. Connect the motor ground wire terminal to any grounding screw (PE) of the drive; connect the motor temperature resistor terminal to the T1 and T2 terminals of the drive and rotate the screw to a proper degree of tightness to ensure smooth connection; connect motor resolver connection terminal to the CN2 of the drive connector and screw tight the fixation screws;

3) Connect the two connection terminals of the brake resistor to the U+ and PB terminals of the drive, and rotate the screw to a proper degree of tightness to ensure smooth connection.

4.7 IO Signal Wiring

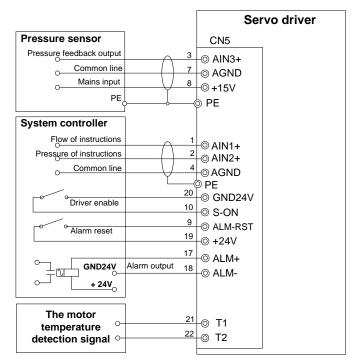
4.7.1 Name and Function of IO Signal Connector (CN5)

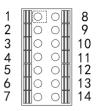
^{12 13 14 15 16 17 18 19 20 21 22}

Definition of CN5 connector

Signal Name	Code	Pin No.	Function
Analog reference 1	AIN1+	CN5-1	Flow command input;
input+	AIN I+	CIND-1	Input gain can be changed via LED and HM
Analog reference 2	AIN2+	CN5-2	Pressure command input:
input+	AINZT	0110-2	Input gain can be changed via LED panel and HMI
Feedback input+	AIN3+	CN5-3	Pressure feedback input:
Feeuback Input+	AINST	CIN3-3	Input gain can be changed via LED panel and HMI
Analog output 1	AOUT1	CN5-5	Monitor output, select internal parameter output via
Analog output 2	AOUT2	CN5-6	LED panel and HMI
Pressure sensor	+15V CN	CN5-8	Voltage: +15VDC, ±5%(full scale range), 25°C
power		CIND-0	output<100mA
	AGND	CN5-4	
Analog GND	AGIND	CN5-7	
Fault reset signal	ALM-RST	CN5-9	Clear servo alarm state
Drive enable	S-ON	CN5-10	Motor changes to power-up state by releasing part of
Drive enable	5-0N	CN5-10	the grid block
			11: Shunt/converging selection (used in conjunction
Digital input 1	11	CN5-11	with multi-pump distribution operation function);
Digital input 1		CN5-11 CN5-12	converging at high level and shunt at low level
Digital input 2	12	CIND-12	I2: Storing signal input (used in conjunction with
			electronic backpressure function); high level injection

Signal Name	Code	Pin No.		Function				
			molding machine works in storing state and low level					
			injection molding machine works in other states.					
			Motor rotation direction signal (match with node flow					
			loop)					
			FWD for lo	w level ar	nd REV for I	nigh level		
			Single pu	ump pre	ssure con	trol step	wise PID	
			parameter	selection	(four-step)			
			14	13	KP no.	KI no.	KD no.	
Digital input 3	13	CN5-13	low	low	0	0	0	
			low	high	1	1	1	
			high	low	2	2	2	
			high	high	3	3	3	
			Multi-pump	parallel	pressure o	control ste	pwise PID	
			parameter	selection	(four-step)			
			14	13	KP no.	KI no.	KD no.	
Digital input 4	14	CN5-14	low	low	0	0	0	
			low	high	1	1	1	
			high	low	2	2	2	
			high	high	3	3	3	
	0.001	0.15.45	Conducting	g when no	servo aları	m occurred	d under the	
Servo ready+	• • • • •	S-RDY+ CN5-15 condition that the drive enable end is LOW and main					V and main	
Servo ready-	S-RDY-	CN5-16	circuit is po	owered up).			
		015 47	Conducting	g when ab	normity is c	letected,		
Alarm output+	ALM+	CN5-17	opto-coupler output, max voltage: DC30V; max					
Alarm output-	ALM-	CN5-18	current: DC	C50mA				
Control power input			1241/ 2014		and by the	loor		
used for digital	+24V	CN5-19		• •	ared by the			
signal			Actable vo	llage rang	le: +8V – +2	25 V		
Digital signal GND	GND24V	CN5-20						
Motor temperature	T1	CN5 24	There is n	o differen	ntiation of p	ositive an	d negative	
sensor 1	11	CN3-21	N5-21 pole for motor temperature sensor terminals (T1,				ls (T1, T2).	
			The drive	support	s motor	temperatu	re sensor	
Matan (T2 C		(resistor) ir	n KTY84-1	130 and PT	1000 type,	which can	
Motor temperature sensor 2		CN5-22	be changed via LED panel and HMI. The hardware					
SEUSUI 2			circuit will	select co	rresponding	temperat	ure sensor	
			detection c	ircuit auto	matically.			


4.7.2 I/O Output Signal Connector Terminal (CN1A)


Definition of CN1A connector

Signal Name	Code	Pin No.	Function	
Digital output 1	01+ 01-	CN1A-1 CN 1A-2	Wobble plate output signal (used in match with dual-displacement pump wobble plate control function) Conducting small displacement, disconnecting large displacement Relay output contact capacity: 3A /250VAC 1A/30VDC	
Digital output 2	02+ 02-	CN1A-3 CN1A-4	Conducting when oil pressure reaches output and feedback pressure reaches a certain percentage of the reference	

4.7.3 Typical Wiring Diagram of Control Signal

4.8 CAN/485 Connector Terminal (CN3)

Definition of CN3 connector

The drive carries two CAN communication interfaces and one 485 communication interface, in which the 485 communication interface supports standard Modbus RTU communication protocol. 485 communication connects to $1k\Omega$ terminal resistor internally.

CAN communication port 1 supports standard CANOPEN communication protocol and connects to $10k\Omega$ terminal resistor internally.

CAN communication port 2 is the CAN communication interface between multiple drives of multi-pump parallel system and is the specific CAN communication port for PC debugging software SCM. CAN communication port 2 connects to $10k\Omega$ terminal resistor internally.

Signal Name	Code	Pin No.	Function	
RS485 communication port	RS485_A RS485_B	CN3-1,8 CN3-2,9	Half-duplex, supportable baud rate: 9600bps,19200bps,38400 bps,57600bps,115200bps(9600bps by default)	
CAN communication port 1	CAN1H CAN1L	CN3-3,10 CN3-4,11	CAN protocol standard signal, adopt optical	
CAN communication port 2	CAN2H CAN2L	CN3-5,12 CN3-6,13	coupling isolation, can be connected to CAN-E directly.	
Case ground	PE	CN3-7,14	Connect to the case	

4.9 Name and Function of Serial Communication Signal Connector (CN1B)

$$\mathbf{o}_6^1 \underbrace{\mathbf{\cdots}}_{\mathbf{0}} \overset{5}{\mathbf{0}} \mathbf{o}_9^1$$

The serial communication connector is the external HMI common connector of our company. If external HMI needs to be used for commissioning, insert the connection wire of external HMI.

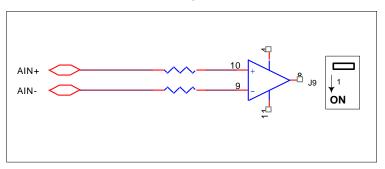
Signal Name	Code	Pin No.	Function
RS485 communication interface	RS485_A RS485_B		Half-duplex, max communication rate: 115200bits/s(19200 bits/s by default)

Communicatio	+5VA	CN1B-4,8	Max output current 200mA, precision ± 5 $\%$
n power			
GND	GND_5VA	CN1B-5,9	

4.10 Interface Circuit

4.10.1 Analog Input Circuit Interfaces

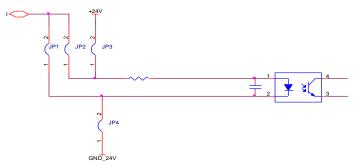
The analog input circuit is as below:


1) Instruction for terminal 1 (flow reference) and 2 (pressure reference) of CN5 connector.

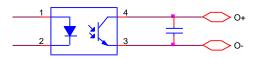
Input impedance of voltage input mode: about $20k\Omega$, max allowed voltage is 15V.

2) Instruction for terminal 3 of CN5 connector (feedback input).

Analog signal is oil pressure feedback signal, users can choose 0 - 10V or 1 - 5V output pressure sensor via toggle switch J9. ON side is 1 - 5V while OFF side is 10V, the default is 10V.


Input impedance: about $100k\Omega$, max allowed voltage is 15V.

4.11 Digital Input Circuit Interface

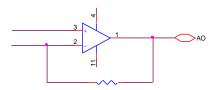

1) Instructions for terminal 9 – 14 of CN5 connector are shown below:

Users can select active-high circuit or (JP2, PJ4 disconnected, JP1, JP3 short connected) active-low circuit input mode via jumpers (JP2, JP4 short connected; JP1, JP3 disconnected), S-ON connected as active-low circuit mode, while I1~I4 connected as active-high circuit mode. If uses need active-low circuit mode, inform the manufacturer to modify the interface logic, which is shown below:

4.11.1 Digital Output Circuit Interfaces

Instructions for 15 – 18 terminal of CN5 connector and the digital output terminal 3 and 4 of CN1A connector: digital output signal (S_RDY, ALM, COIN, O2) is opto-coupler open collector output. Please use opto-coupler circuit, relay circuit or bus receiver circuit for receiving, below is the interface circuit.

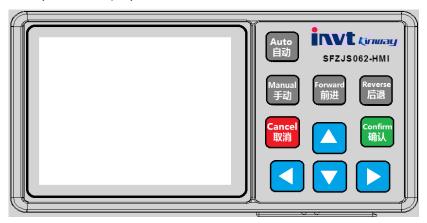
- Max voltage: DC30V\
- Max current: DC50mA


2) Instruction for relay output circuit:

Instruction for digital output terminal 1 and 2 of CN1A connector: digital output signal (O1) is relay output. Below is interface circuit.

3) Analog output circuit is as below:

Instruction for terminal 5 and 6 (analog output) of CN5 connector: Analog output signal (AOUT1, AOUT2) is operational amplifier output which forms an output circuit with AGND. Users can select internal parameter output via LED panel, HMI and SCM, the default setting is AOUT1 pressure output and AOUT2 motor flow output. Below is the interface circuit.


- Output precision: 10-bit D/A
- Voltage range: 0 10V
- Max current: DC10mA

Chapter 5 Display and Function

5.1 External HMI Display and Operation

5.1.1 HMI Panel Interface Instruction

Control panel is divided into LCD display area and keypad area. LCD adopts 5.7-inch 320x240 screen and keypad area is comprised of 10 buttons which are divided into operation key area, direction key area and setup key area as shown below.

The layout diagram of LCD area display is shown below:

The menu bar	Monito	Setting	Tuning
Parameters of the display area			
The system status bar	System state: Speed:	Torque:	Presure: Location:

Menu bar: Display the menu options under different states, the selected menu option is displayed in blue letters on white background while other menu options are displayed in white letters on blue background. The menu bar can display 3 menu options simultaneously at most, and the options can be selected via direction keys.

Parameter display area: Display the parameter name, value and unit of the selected menu.

System state bar: Display current system state and torque, speed and resolver value. The unit is default value (torque: nm, speed: r/m).

The content of menu bar and parameter display area vary with the key operations. The content of system state bar varies with the system operation state.

5.2 Function of Control Panel Keys

5.2.1 Key Function of Operation Key Area

Auto 自动	Press this button to switch between "enable" and "disable".
Manual 手动	Reserved
Forward 前进	Under commissioning menu, if "jogging enable" is enabled, press forward key and the motor will rotate forward according to the set jogging speed.
Reverse 后退	Under commissioning menu, if "jogging enable" is enabled, press backward key and the motor will rotate backward according to the set jogging speed.

5.2.2 Key Function in Direction Key Area

-	-
	1. When switching the menus, press this key to select the menu rightward;
	2. When setting parameters, press this key to control the selected block "" to jump rightward between "save"/"cancel" and parameter numbers.
	1. When switching the menus, press this key to select the menu leftward;
	2. When setting parameters, press this key to control the selected block "" to jump leftward between "save"/"cancel" and parameter numbers.
	1. When checking parameters, press this key to select corresponding parameter
	upward.
	2. When setting parameters, press this key to change the selected number in
	plus-one mode and realize carry shift.
	1. When checking parameters, press this key to select corresponding
	parameters in downward mode.
	2. When setting parameters, press this key to change the selected number in
	minus-one mode and realize decomposition shift.

5.2.3 Key Function of Setup Key Area

Confirm 确认	 Press this key to enter parameter setup from parameter checking, or realize disable/enable function. When selecting "save"/"cancel" virtual button, press this key to save/cancel parameter setup.
Cancel 取消	1. Press this key to return from parameter setup to parameter checking.

5.3 External HMI Function

When HMI is connected to the drive and powered up, the screen will pop out initialization process, and after initialization is done, users can use the keys to operate HMI.

INVT INDUSTRIAL TECHNOLOGY (SHANGHAI) CO. LTD.		
Electro-hydraulic servo drive system		
System initialization		

Reference parameter list, users can use and keys to switch menu bars and select "monitor", "set", "debugging", "multi-pump" or "parameter programming" menu bars, the selected menu bar will be displayed in highlighted cursor. Stop the highlighted cursor at the desired parameter.

Monito	Setting	Tuning
Drive Type		CT-7501-A-0
Motor Type		U1004F.15.3
Pump Type P. Sensor Ze		SETTIMA 28mL/r
P. Cal. Mode	1	Linear
Q. Cal. Mode		Linear
Sys Stats: Re	ady (Tech	n.) P: 0.0
S: 0	T: 0	R: 2100

After parameter is selected by highlighted cursor, press key to enter parameter modification interface:

Parameter Set	tings
Motor Type	
K036F20C18P	
001	
Save	Cancel
	P: 0.0 n R: 2100

Use and keys to stop the highlighted cursor at the currently selected motor and select motor model via and key;

Parameter Settings	
Motor Type	
K036F20C18P	
0 0 1	
Save Cancel	
Sys Stats: Ready (Tech.) P: 0.0	_
S: 0 rpm T: 0 Nm R: 2100	

Then stop the highlighted cursor at "save" via and key, and press wey to save and exit to setup menu bar, HMI will transmit current parameters to the drive.

Some debugging parameters differ from the setup parameters eg when diagnosis enable parameter is selected by highlighted cursor, press key to modify the parameter content directly.

Menu No.	Menu Name	Meaning	Parameter Range	Unit		
1 st sci	1 st screen					
0	Flow reference+ Analog signal voltage	Flow reference value and voltage value of flow reference analog signal	[0,2400.0] [0,10.00]	L/min V		
1	Pressure reference+ Analog signal voltage	Pressure reference value and voltage value of pressure reference analog signal	value of pressure reference analog			
2	System fault	System fault alarm (can display multiple faults that occurred simultaneously)	Refer to <u>10.1</u>			
3	Motor current	Valid value of motor winding current	[0,900.0]	А		
4	AC voltage	AC input voltage	[0,500]	Vrms		
5	DC voltage	DC bus voltage	[0,800]	V		
2 nd sc	reen					
6	Torque limit	Real-time torque output capacity of the system	[0,1800]	Nm		
7	Motor temperature	Motor winding temperature	[-52,244]	°C		
8	Drive temperature	IGBT module temperature	[-46,244]	°C		
9	Environment temperature	Air temperature of the drive	[-18,114]	°C		
10	Machine material	The drive no. which can be modified by the user	[undefined, 1,999]			
11	Max system pressure	Max pressure for oil pump to discharge hydraulic pressure oil	[0,250.0]	bar		

5.3.1 Monitoring Menu List

Menu No.	Menu Name	Meaning	Parameter Range	Unit		
3 rd sc	3 rd screen					
12	Max system flow	Max flow for the oil pump to discharge hydraulic pressure oil		L/min		
13	Power	Mechanical power outputted by the motor	[0,327.67]	kW		
14	Present PID step	The drive supports usage of multi-step single-pump /multi-pump pressure to control PID function under different working conditions. This menu displays the single pump or multi-pump pressure currently used to control the PID step no.	[0,3]			
15	Converging type	Select the working mode of the drive under multi-pump operation	0: single pump; 1: Composite; 2: Multi-pump; 3: Multi-mode			
16	Software version	Drive software version				
17	Interface version	HMI software version				
4 th sci	reen					
18	Operation time	Accumulated running time of the drive	[0,99] [0,364] [0,23] [0,59]	Year Day Hour Minute		
19			[0,9.99]			

5.3.2 Setup Menu List

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
1 st scr	een				
0	Drive model selection	Drive model	Refer to drive model list in 5.5.5	The same with drive label	
1	Motor model selection	Motor model	Refer to motor model list in <u>5.5.5</u>	U1013F.17.3	
2	Pump selection	Oil pump model		PUMP 100 mL/r	
3			Pressure feedback zero position	The default pressure	

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
	calibration	removed by pressure feedback zero position calibration	calibration	feedback zero position offset is 0V	
4	Pressure calibration mode	Calibration mode of pressure reference analog signal	Linear pressure calibration Polyline pressure calibration	Linear pressure calibration	
5	Flow calibration mode	Calibration mode of flow reference analog signal	Linear flow calibration Polyline flow calibration	Linear flow calibration	
2 nd sc	reen				
6	Linear/polyline pressure calibration	Used to select pressure linear calibration or polyline calibration. During calibrating, the drive enable should be disabled. During linear calibration, set the injection molding machine controller to provide zero position and full range voltage. Polyline calibration should be carried out when the pressure reference value of injection molding machine system drive is the same with that of the polyline point.	Under linear calibration mode: Zero position Full range Under polyline calibration mode: Polyline point 0 Polyline point 1 Polyline point 2 Polyline point 3 Polyline point 3 Polyline point 4 Polyline point 5 Polyline point 5 Polyline point 6 Polyline point 7 Polyline point 7 Polyline point 8 Polyline point 8 Polyline point 9 Polyline point 10 Polyline point 11 Polyline point 11	Zero position	
7	Linear/polyline flow calibration	Used to select flow linear calibration or polyline calibration. During calibrating, the drive enable should be disabled. During linear calibration, set the injection molding machine	Under linear calibration mode: Zero position	Zero position	

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
		controller to provide zero	Polyline point 1		
		position and full range flow.	Polyline point 2		
		Polyline calibration should	Polyline point 3		
		be carried out when the flow	Polyline point 4		
		reference value of injection	Polyline point 5		
		molding machine system	Polyline point 6		
		drive is the same with that	Polyline point 7		
		of the polyline point.	Polyline point 8		
			Polyline point 9		
			Polyline point 10		
			Polyline point 11		
			Polyline point 12		
		Calculation times of the			
8	Pressure filter	average filter of pressure	[1,32]	1	
		reference sampling value			
		Calculation times of the			
9	Flow filter	average filter of flow	[1,32]	1	
		reference sampling value			
10	Pressure full range	Set the pressure full range of the node	[1,250]	175	bar
11	Flow full range	Set the flow full range of the node	[1,2400]	200	L/min
3 rd scr	reen				
12	Max flow	Set the max flow value of the node	[0,2400]	200	L/min
13	Max pressure	Set the max pressure value of the node	[0,250]	180	bar
14	Flow reference zero position deadzone	Small signal vibration of flow reference analog signal	[0,100.00]	0.5	%
15	Pressure reference zero position deadzone	Pressure reference analog signal small signal control	[0,100.00]	0.5	%
16	Pressure feedback zero position deadzone	Pressure feedback analog input signal small signal control	[0,100.00]	0	%
17	Pressure full range voltage	Corresponding DC voltage when pressure reference input reaches full range	[0,11.00]	10.00	V

Menu				Default	
No.	Menu Name	Meaning	Parameter Range	Value	Unit
4 th scr	een		I		
		Corresponding DC voltage when flow reference input reaches full range	[0,11.00]	10.00	
19	Pressure feedback gain	Enlargement multiple of pressure feedback signal	[0,32767]	8182	
20	Pressure reference rising slope	Step length of the rising of pressure reference per ms	[0,32767]	16000	0.0076
21	Pressure reference declining slope	Step length of the declining of pressure reference per ms	[0,32767]	16000	29 bar/ms
22	Flow reference rising slope	Step length of the rising of pressure reference per ms	[0,32767]	16000	"0.073
23	Flow reference declining slope	Step length of the declining of pressure reference per ms	[0,32767]	16000	24L/mi n" per second
5 th scr	een				
24	Pressure multi-step PID enable	Used to select whether to use multi-step mode for pressure PID parameter	0: Disable 1: Enable	0: Disable	
25	Pressure proportional gain 0	The 0 th step of proportional parameter of pressure PID control	[0,32767]	13000	
26	Pressure integral gain 0	The 0 th step of integral parameter of pressure PID control	[0,32767]	100	
27	Pressure differential gain 0	The 0 th step of differential parameter of pressure PID control	[0,32767]	0	
28	Pressure proportional gain 1	The 1 st step of proportional parameter of pressure PID control	[0,32767]	13000	
29	Pressure integral gain 1	The 1 st step of integral parameter of pressure PID control	[0,32767]	100	
6 th scr	een				
30	Pressure differential gain 1	The 1 st step of differential parameter of pressure PID	[0,32767]	0	

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
		control			
31	Pressure proportional gain 2	The 2 nd step of proportional parameter of pressure PID control	[0,32767]	13000	
32	Pressure integral gain 2	The 2 nd step of integral parameter of pressure PID control	[0,32767]	100	
33	Pressure differential gain 2	The 2 nd step of differential parameter of pressure PID control	[0,32767]	0	
34	Pressure proportional gain 3	The 3 rd step of proportional parameter of pressure PID control	[0,32767]	13000	
35	Pressure integral gain 3	The 3 rd step of integral parameter of pressure PID control	[0,32767]	100	
7 th scr	reen				
36	Pressure differential gain 3	The 3 rd step of differential parameter of pressure PID control	[0,32767]	0	
37	Speed gain switching 0	When below speed gain switching 0, speed loop PI	[0,6000]	5994	rpm
38	Speed gain switching 1	parameter is speed proportional gain, speed integral gain; when above speed gain switching 1, speed loop PI parameter is speed proportional gain 1, speed integral gain 1. Between these two, PI parameter is obtained by the linear change of two groups of parameters.	[0,6000]	5994	rpm
39	Speed multi-step PI enable	Used to select whether to use multi-step mode for speed PI parameter	0: Disable 1: Enable	0: Disable	
40	Speed proportional gain 0	The 0 th step of proportional parameter of speed PI	[0,32767]	7000	

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
		control			
41	Speed integral gain 0	The 0 th step of integral parameter of speed Pl control	[0,32767]	170	
41	Motor rotation direction	Set motor rotation direction	FWD REV	FWD	
8 th scr	een				
42	High speed speed proportional gain	Proportional parameter of high speed speed PI control	[0,32767]	7000	
43	High speed speed integral gain	Integral parameter of high speed speed PI control	[0,32767]	140	
44	Speed proportional gain 1	The 1 st step of proportional parameter of speed Pl control	[0,32767]	7000	
45	Speed integral gain 1	The 1 st step of integral parameter of speed PI control	[0,32767]	140	
46	Speed proportional gain 2	The 2 nd step of proportional parameter of speed Pl control	[0,32767]	7000	
47	Speed integral gain 2	The 2 nd step of integral parameter of speed Pl control	[0,32767]	140	
9 th scr	een				
48	Speed proportional gain 3	The 3 rd step of proportional parameter of speed Pl control	[0,32767]	7000	
49	Speed integral gain 3	The 3 rd step of integral parameter of speed Pl control	[0,32767]	140	
50	Pump displacement (reset)	Oil pump displacement per revolution	[0,32767]	100	mL/rev
51	Pump leakage (reset)	The ratio of oil pump discharge displacement and outlet pressure	[0,100.00]	0	L/min /bar
52	Pump REV speed limit	Max REV speed of oil pump	[0,-6000]	-300	rpm
53	Max motor speed	Max motor speed in FWD and REV rotation	[0,6000]	2200	rpm

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit			
10 th screen								
54	DC voltage calibration	Use the actually detected DC bus voltage to calibrate the drive DC voltage	[0,800]	Null	V			
55	AC voltage calibration	Use the actually detected AC input voltage to calibrate the drive AC voltage	[0,800]	Null	V			
56	Base flow enable	Used to set whether the oil pressure control is base flow mode	Without base flow With base flow	Without base flow				
57	Base flow pressure	If the system is in base flow control mode, this parameter is used to set the target pressure value of the base flow	[250.0]	3.0	bar			
58	Flow value of base flow	If the system is in base flow control mode, this parameter is used to set the flow value used to make the system reach base flow pressure value	[327.6]	1.0	L/min			
59		When the gap between oil pump feedback pressure and reference pressure exceeds this set value, the motor will decelerate rapidly to limit the pressure overshoot	[5,50]	30	bar			
11 th so	reen							
60	Motor rotation direction	Set the motor rotation direction	FWD REV	FWD				
61	Resolver direction	Set the resolver direction	FWD REV	FWD				
62	Backpressure mode	Select the control mode of backpressure storing of injection molding machine	Manual Automatic	Manual				
63	Pressure sensor model selection	Pressure sensor type	5v 10v	10v				

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
			400bar		
64	Plunger pump model selection	Select displacement type	Single displacement Dual displacement	Single displacemen t	
65	Plunger pump displacement ratio	Displacement ratio of big and small dual-displacement pump	[0,100.0]	20	%
12 th so	creen				
	Wobble plate switching pressure threshold	Wobble plate switches to the feedback pressure threshold value of small displacement	[0,250.0]	195	bar
67	Displacement switching mode	0: Over-pressure; 1: Over-pressure occurred during holding pressure		0: Over-pressu re	
68	Displacement pressure judging delay	When the system meets the wobble plate switching condition and the duration exceeds the displacement pressure judging delay, wobble plate will start switching	[0,32767]	100	ms
69	Displacement switching rising delay	The time from when the drive wobble plate control digital output port converts to disconnection to when the pump displacement increases to large displacement value	[0,32767]	10	ms
70	Displacement switching declining delay	The time from when the drive wobble plate control digital output port converts to connection to when the pump displacement declines to large displacement value	[0,32767]	10	ms
71		Speed threshold value of wobble plate switching to	[0,6000]	1200	rpm

Menu				Default				
No.	Menu Name	Meaning	Parameter Range	Value	Unit			
		large displacement						
13 rd screen								
		Speed threshold value of						
72	Speed switching lower	wobble plate switching to	[0,6000]	200	rpm			
	limit	small displacement	[0,0000]		.6			
		When the ratio of feedback						
		pressure and reference						
73	O2 connection	pressure exceeds this	[0,100.00]	90	%			
	pressure coefficient	coefficient, the digital output						
		O2 is connected						
		When negative torque						
- 4	Negative torque	control is enabled, motor	0: Disable					
74	control	negative torque amplitude is	1: Enable	0: Disable				
		zero						
		During motor autotuning,						
75	Rated motor voltage	input motor nameplate	[0,800]	334	V			
		parameter						
	Rated motor current	During motor autotuning,						
76		input motor nameplate	[0,900]	64	А			
		parameter						
		During motor autotuning,						
77	Rated motor speed	input motor nameplate	[0,6000]	1467	rpm			
		parameter						
14 th sc	reen							
	Rated motor	During motor autotuning,						
78		input motor nameplate	[0,600.0]	97.8	Hz			
	frequency	parameter						
	Rated motor	During motor autotuning,			V/Krp			
79	counter-emf	input motor nameplate	[0,800.0]	183.1	m			
		parameter						
			0: NTC					
80	Motor temperature	Select according to the	1: PTC	2: KTY84				
	sensor	motor sensor type	2: KTY84					
L			3: PT1000					
	Upper limit of reverse	Proportional coefficient of						
81	torque	max motor reverse torque	e [0,100] 100	100	%			
		reduction						
82	Oil circuit pressure	The pressure discharge	0: Normal oil circuit	0: Normal oil				

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
	discharge mode	mode of system high pressure oil, adopt oil pump reversion (normal oil circuit)	discharge oil	circuit	
		or electromagnet overflow valve (valve pressure discharge oil circuit)			
83	•	When advanced parameter is enabled, the setup parameters larger than no. 66 of HMI can be displayed and set; when it is disabled,		0	
		no.65 of HMI can be displayed			
15 th so	reen				
84	Pressure sensor range	Set the pressure range of pressure sensor	[0,250]	250	bar
85	Pressure feedback fine tuning parameter	Adjust pressure feedback gain coefficient via this parameter	[50,200]	100	%
86	Min value of flow reference	Set the min value of flow analog input	[0,2400.0]	0	L/Min
87	Over-modulation enable	After over modulation is enabled, the output voltage modulation ratio of the drive can reach 105% to the max		Disable	
88	Over modulation ratio	Set the modulation ratio of the max output voltage of the drive	[1.00,1.05]	1.05	%
	Carrier frequency	Select the carrier frequency of the drive	[4,5,8,10, 3,2]	3	kHz
16 th so	reen				
90	Speed feedback filter mode	Select speed operation mode	U U	0: Moving averages	
91	Speed control rigidness	1: Corresponding speed loop speed is the lowest;	[1,14]	9	

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
		14: Corresponding speed loop speed is the fastest			
92	Motor inertia	Set automatically during motor model selection	[0,0.655]	0.018	KgM ²
93	Motor autotuning direction	Default value: 0: FWD	0: FWD 1: REV	0: FWD	
94	Rated drive power	Set automatically during		$4R4 \rightarrow 4.00$ $5R5 \rightarrow 5.50$ $7R5 \rightarrow 7.50$ $011 \rightarrow 11.00$ $015 \rightarrow 15.00$ $075 \rightarrow 75.00$	Kw
95	Rated drive current	motor model selection	[0,900]	$4R4 \rightarrow 18.4$ $5R5 \rightarrow 25.5$ $7R5 \rightarrow 31.1$ $011 \rightarrow 36.8$ $015 \rightarrow 42.4$ $075 \rightarrow 220.6$	A
17 th so	creen		1	L	
96	Torque limit	Max torque of motor electromotion and power generation	[0,1800]	425	Nm
97	Disturbance compensation gain	Output torque coefficient of pressure disturbance compensation function	[0,200]	0	%
98	Disturbance compensation filter frequency	Filter frequency setup	[0,5000]	500	Hz
99	Disturbance compensation lag cycle	Output torque lag cycle of pressure disturbance compensation function	[0,15]	5	Cycle (Speed loop cycle)
100	PWM voltage compensation	A kind of PWM generation mode used to reduce the electromagnet interference of analog signal	0: Disable 1: Enable	0: Disable	
101	Pump stuck detection	Gear pump stuck detection and reset function	0: Disable 1: Enable	1: Enable	

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
18 th so	reen			Value	
		Speed integral gain parameter increases based on this parameter according to the ratio of feedback torque and max motor torque	[0,1000]	0	%
103	Valve pressure discharge starting speed	Threshold of the starting speed of electromagnet overflow valve	[300,-300]	-1	rpm
	Valve pressure discharge starting pressure	Threshold of the starting pressure of electromagnet overflow valve	[0,500]	20	bar
	Valve pressure discharge closing pressure	Electromagnet overflow valve is closed when feedback pressure is lower than this value	[0,500]	1	bar
106	Cut-in speed of pressure-hold feedforward	Judge whether the system enters the upper speed limit of pressure-hold state	[0,6000]	100	rpm
	Cut-in pressure of pressure-hold feedforward	Judge whether the system enters the lower pressure limit of pressure-hold state	[0,500]	200	bar
19 th so	creen	1	1		
108	Pressure-hold feedforward gain	Improve this parameter can improve the stability of holding pressure	[0,32767]	0	
109	PID terminal usage mode		0: Common 1: Specific for casting machine	0	
110	ALM-RST input selection	Input terminal function	0: No function 1: Fault reset	1: Fault reset	
111	S-ON input selection	setup	2: Drive enable 3:	2: Drive enable	
112	I1 input selection		Shunt/converging selection 4: Storing signal input	3: Shunt/conve rging selection	

Menu				Default	
No.	Menu Name	Meaning	Parameter Range	Value	Unit
			5: Motor rotation		
			direction		
			6: PID terminal 1	4: Storing	
113	12 input selection		7: PID terminal 2	signal input	
			8: PID terminal 3		
			9: PID terminal 4		
20 th so	reen				
			10: Trigger mode	6: PID	
114	13 input selection		selection	terminal 1	
445			11: Swash plate	7: PID	
115	14 input selection		control enable	terminal 2	
110	IF input coloction		(used when swash	0: No	
116	15 input selection		plate is controlled	function	
447	IC input coloction		by overpressure	0: No	
117	16 input selection	Input terminal function	mode during	function	
118	17 input coloction	•	holding pressure). setup 12: Swash plate switching command 13: PQ selection signal	0: No	
110	17 input selection	ootap		function	
119	I8 input selection			0: No function	
21 st so	reen				
120				1: Servo	
120	S-RDY output		0: No output	ready	
121	ALM output selection		1: Servo ready	2: Alarm	
121			2: Alarm output	output	
122	COIN output selection		3: I2 terminal state	0: No	
122		Output terminal function	4: Swash plate	function	
		setup	control output	4: Swash	
123	O1 output selection	p	5: Oil pressure	plate control	
			reaches output	output	
				5: Oil	
124	O2 output selection		discharge output	pressure	
			7-63: Reserved	reaches	
				output	

Menu	Menu Name	Meaning	Parameter Range	Default	Unit
No.				Value	
		Current limit mode serves to			
		limit the max output current			
		based on the temperature			
		of drive cooling fins;			
		overload protection function	-		
125	Overload protection	does not work.	,	0: Current	
0	mode	It protection mode serves to	Protection mode	limit mode	
		determine whether	2 – 3: Reserved		
		threshold value is exceeded			
		by judging the overload			
		operation time, thus			
		protecting IGBT			
22 nd s	creen				
		Bus voltage delay			
126	Bus overvoltage @	overvoltage protection	[0,800]	750	V
		voltage threshold			
	Bus overvoltage @ time	Bus voltage delay			
127		overvoltage protection	[0,30000]	20	5ms
		detection time			
		Bus voltage transient			
128	Bus overvoltage	overvoltage protection	[0,800]	780	V
		voltage threshold			
		Bus voltage delay			
129	Bus undervoltage @	undervoltage protection	[0,800]	380	V
		voltage threshold			
		Bus voltage delay			
130	Bus undervoltage @	overvoltage protection	[0,30000]	150	5ms
	time	detection time			
		Bus voltage immediate			
131	Bus undervoltage	undervoltage protection	[0,800]	320	V
	_	voltage threshold			
23 rd so	creen		•		
		Voltage threshold value of			
	Bus undervoltage	bus voltage undervoltage			
132	during enable	protection when motor is	[0,800]	315	V
		enabled			
		Voltage threshold of AC			
133	AC overvoltage @	voltage delay overvoltage	[0,800]	487	V
J	1		1	1	

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
		protection			
134	AC overvoltage @	Detection time of AC voltage delay overvoltage protection	[0,30000]	40	5ms
135	AC overvoltage	Voltage threshold of AC voltage transient overvoltage protection	[0,800]	495	V
136	5	Voltage threshold of AC voltage delay overvoltage protection	[0,800]	290	V
137	AC undervoltage @ time	Detection time of AC delay undervoltage protection	[0,30000]	100	5ms
24 th so	creen				
138	AC undervoltage	Voltage threshold value of AC voltage transient overvoltage protection	[0,800]	0	V
139	Time of power-up overtime	Max delay time of soft start of relay closing	[0,30000]	2000	5ms
140		Motor over-temperature protection value	[0,500]	125	°C
141	Module protection temperature	Module over-temperature protection value	[0,500]	86	°C
142	Air protection temperature	Over-temperature protection value of ambient temperature	[0,500]	400	°C
143		Software check overcurrent protection value		4R4→50 5R5→70 7R5→95 011→105 015→120 075→530	A
25 th so	creen				
144		FWD/REV overspeed protection delay time	[0,5000]	100	ms
145	FWD speed protection value	Set automatically during motor model selection	[0,6000]	2700	rpm
146		Set automatically during motor model selection	[-6000,0]	-2700	rpm

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
147	Overpressure protection value	Upper limit of pressure feedback overpressure alarm	[0,250]	195	bar
148	Pressure sensor fault value	Min voltage threshold of 5V pressure sensor, 32767 corresponds to 5V	[0,32767]	0	
149	AC/DC error threshold	Calculate the rectification voltage via AC voltage, then compares it with the actual DC voltage, if their difference exceeds this parameter, rectification unit fault will be reported		80	v
26 th so	reen	· ·		1	
150		Automatically set to the brake resistor heating factor matched with the drive during motor model selection	[0,500]	4R4,5R5,7R 5,011,015→ 36 018,025,030 , 035,045,055 →40 075,095→0	
151	Brake resistor cooling factor	Automatically set to the brake resistor cooling factor matched with the drive during drive model selection		1	
152		Automatically set to the brake resistor cooling factor matched with the drive during drive model selection	[0,30000]	4R4,5R5,7R 5,011,015 \rightarrow 429 018,025,030 ,035,045,05 5 \rightarrow 292 075,095 \rightarrow 37 4	
153	Motor short-circuit protection value	Motor 3PH grounding short-circuit, check current threshold value	[0,900]	10	A
154	Phase loss protection selection		0: Disable 1: Enable	1: Enable	

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
155	Rectification overload	Current overload protection	0: Disable	0: Disable	
155	protection selection	of rectification unit	1: Enable		
27 th so	creen				
450	Brake resistor fault	Brake resistor fault	0: Disable		
156	detection	protection function	1: Enable	1: Enable	
457	Resolver fault	Resolver fault protection	0: Disable	1. Enchla	
157	detection	function	1: Enable	1: Enable	

5.3.3 Commissioning Menu List

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
1 st scr	een				
0	Operation enable	Turn on/off motor drive function	Disable Enable	Related to the drive enable IO level	
1	Diagnosis enable	Turn on/off diagnosis function	Disable Enable	Disable	
2	Drive test (valid only after diagnosis enable is turned on)	Test the drive	Disable Enable	Disable	
3	Measure initial angle (valid only after diagnosis enable is turned on)	Refer to <u>9.2.5</u>	Disable Enable	Disable	
4	Jogging enable (valid only after diagnosis enable is turned on)	Refer to <u>9.2.6</u>	Disable Enable	Disable	
5	Motor parameter autotuning (valid only after diagnosis enable is turned on)	During motor autotuning, input motor nameplate parameter first, the precision of the motor parameter obtained via "static" mode depends on the accuracy of motor nameplate. When "dynamic" mode is used, no-load or light-load of	0: Disable 1: Dynamic 2: Static	0: Disable	

	•	•		• •	
Menu	Menu Name	Meaning	Parameter	Default	Unit
No.			Range	Value	
		motor is required for			
		obtaining accurate motor			
		parameters			
2 nd sc	reen	ſ	r	r	
6	Control mode	Set the drive control mode	Speed mode	Process	
Ŭ			Process mode	mode	
			The FWD/REV		
	Speed reference		speed reference		
7	(speed mode is valid)		value cannot	0	rpm
	(speed mode is valid)		exceed the max		
			motor speed		
			Digital input,		
			analog input, CAN		
	Durana		continuous, 485		
8	mode input mode	continuous,	Analog input		
		Input mode	CANopen input,		
			EtherCAT input,		
			internal reference		
		Flow reference value is			L\mi
9	Flow reference	valid when command input	[0, max flow]	0	
		mode is digital input			n
		Pressure reference value is			
10	Pressure reference	valid when command input	[0, max pressure]	0	bar
		mode is digital mode			
		Max speed of the motor			
11	Max jogging speed	when forward and	[0,1000]	100	rpm
		backward button is pressed			
3 rd scr	een				
	Resolver offset	Resolver and motor zero			
12	quantity	position offset angle	[0, 4095]	0	
<u> </u>			Pressure		
			reference		
			Pressure		
			feedback		
13	DA1	Set the output variable of	Flow reference	Pressure	
		analog output port 1	Flow feedback	feedback	
			Speed reference		
			Speed feedback		
			Torque reference		
	I	I	rorque rererence		

Menu			Parameter	Default	
No.	Menu Name	Meaning	Range	Value	Unit
		The corresponding digital	Torque feedback Resolver feedback DC voltage Phase current Fault word 1 Fault word 2 Communication command	Value	
14	Max value of DA1	input of max output of analog output port 1	[-32767,32767]	32767	
15	Min value of DA1	The corresponding digital input of min. output of analog output port 1	[-32767,32767]	0	
16	DA2	Set the output variable of analog output port 2	Pressure reference Pressure feedback Flow reference Flow feedback Speed reference Speed feedback Torque reference Torque feedback Resolver feedback DC voltage Phase current Fault word 1 Fault word 2 Communication command	Speed feedback	
17	Max value of DA2	Corresponding digital input of max output of analog output port 2	[-32767,32767]	16384	
4 th scr	een				
18	Min value of DA2	Corresponding digital input of minimum output of	[-32767,32767]	-16384	

Menu	Menu Name	Meaning	Parameter	Default	Unit	
No.			Range	Value		
		analog output port 2				
19	Output value of DA	Analog output port outputs this variable when DA variable output selects communication command	[-32767,32767]	0		
20	Clear fault manually	Void drive enable can clear the faults other than Err08, Err11, Err12, Err18 and Err24, while all the faults can be cleared via manual clearance	0: No action 1: Clear	0: No action		
21	Internal flow reference 0	Internal flow reference Dimension is flow full range				
22	Internal pressure reference 0	Internal pressure reference Dimension is pressure full range	[0, 100.0]	0	%	
23	Internal flow reference 1	Internal flow reference Dimension is flow full range				
5 th scr	een					
24	Internal pressure reference 1	Internal pressure reference Dimension is pressure full range				
25	Internal flow reference 2	Internal flow reference Dimension is flow full range				
26	Internal pressure reference 2	Internal pressure reference Dimension is pressure full range	[0, 100.0]	0	%	
27	Internal flow reference 3	Internal flow reference Dimension is flow full range				
28	Internal pressure reference 3	Internal pressure reference Dimension is pressure full range				
29	Internal flow reference 4	Internal flow reference Dimension is flow full range				
6 th scr	een					
30	Internal pressure reference 4	Internal pressure reference Dimension is pressure full range	[0, 100.0]	0	%	

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
31	Internal flow reference 5	Internal flow reference Dimension is flow full range			
32	Internal pressure reference 5	Internal pressure reference Dimension is pressure full range			
33	Internal flow reference 6	Internal flow reference Dimension is flow full range			
34	Internal pressure reference 6	Internal pressure reference Dimension is pressure full range			
35	Internal flow reference 7	Internal flow reference Dimension is flow full range			
7 th scr	reen				
36	Internal pressure reference 7	Internal pressure reference Dimension is pressure full range	[0, 100.0]	0	%

5.3.4 Multi-Pump Menu List

Menu No.	Menu Name	Instruction	Parameter Range	Default Value	Unit
1 st scr	een				
0	Network enable/disable	Network enable control	Disable Enable	Disable	
1	Drive enable/disable on the network	Used to void the motor enable of all nodes, suitable for multi-pump mode only	Disable Enable	Related to the drive enable IO level	
2	Converging type	Select converging type	Single-pump Composite Multi-pump Multi-mode	Single-pump	
3	Node no.	If node no. is 0, it means master, if it is 1 – 15, it means slave	[0,15]	0	
4	Number of slave node	If node number is 0, slave node number means the number of slaves related to this master	[0,15]	0	
5	Node type	Set the working mode of	Independent unit	Independent	

Manu			Deveryoter	Defeult	
Menu No.	Menu Name	Instruction	Parameter	Default Value	Unit
NO.		the drive in the node	Range Control unit	unit	
		the arive in the hode		unit	
			Following unit		
. nd			Flow loop unit		
2 nd sc	reen	1	1		
		The condition for the next			
		pump to engage, when the			
		system flow exceeds the			
6	Flow cut-in threshold	flow cut-in threshold of	[0,100.0]	25	%
		current pump, the next			
		pump will engage in the			
		operation			
		The condition for the next			
		pump to engage, used to			
7	Upper limit of flow	prevent the repeated start	[0,400,0]	5	%
	cut-in hysteresis	and stop of the pump when	[0,100.0]		%
		the flow is in threshold			
		point			
		The condition for the next			
		pump to engage, used to			
8	Lower limit of flow	prevent the repeated start	[0,100.0]	2.5	%
ð	cut-in hysteresis	and stop of the pump when		2.5	%
		the flow is in threshold			
		point			
	8.4. IV:	The 0 th step of proportional			
9	Multi-pump pressure	parameter of multi-pump	[0,32767]	8000	
	proportional gain 0	pressure PID control			
		The 0 th step of integral			
10	Multi-pump pressure	parameter of multi-pump	[0,32767]	88	
	integral gain 0	pressure PID control			
		The 0 th step of differential			
11	Multi-pump pressure	parameter of multi-pump	[0,32767]	0	
	differential gain 0	pressure PID control			
3 rd scr	reen	••	•	•	<u> </u>
		The 1 st step of proportional			\square
12	Multi-pump pressure	parameter of multi-pump	[0,32767]	8000	
	proportional gain 1	pressure PID control			
	Multi-pump pressure	The 1 st step of integral			+-
13	integral gain 1	parameter of multi-pump	[0,32767]	88	
L	intograi gain i	Ibaramoroi oi muir-humh	1		

Manu			Devenueter	Defeult	
Menu No.	Menu Name	Instruction	Parameter	Default Value	Unit
INO.			Range	value	
		pressure PID control			
	Multi-pump pressure	The 1 st step of differential			
14	differential gain 1	parameter of multi-pump	[0,32767]	0	
		pressure PID control			
	Multi-pump pressure	The 2 nd step of proportional			
15	proportional gain 2	parameter of multi-pump	[0,32767]	8000	
		pressure PID control			
	Multi-pump pressure	The 2 nd step of integral			
16	integral gain 2	parameter of multi-pump	[0,32767]	88	
		pressure PID control			
	Multi-pump pressure	The 2 nd step of differential			
17	differential gain 2	parameter of multi-pump	[0,32767]	0	
		pressure PID control			
4 th scr	een				
	8.4. IV	The 3 rd step of proportional			
18	Multi-pump pressure proportional gain 3	parameter of multi-pump	[0,32767]	8000	
		pressure PID control			
	Multi-pump pressure integral gain 3	The 3 rd step of integral	[0,32767]		
19		parameter of multi-pump		88	
		pressure PID control			
		The 3 rd step of differential			
20	Multi-pump pressure	parameter of multi-pump	[0,32767]	0	
	differential gain 3	pressure PID control			
		Set the synchronization	0 Eng c		
04	ECAT synchronization	mode between EtherCAT	0-Free,	0	
21	mode	communication master and	1-SM2INT	0	
		slave	2-Sync0		
		Set the synchronous	0.500		
		interruption cycle of DC	0-500us,		
22	ECAT synchronization	Sync0 when EtherCAT	1-1ms	0	
	time	communication uses DC	2-2ms		
		mode	3-4ms		
	405 1	Set the local (slave)			
	485 local	communication address	14 0551	10	
23	communication	during 485 serial	[1-255]	10	
	address	communication			
5 th scr	een				
24	485 communication	Select by parameters the	0:N,8,1	0	
_ <u>- '</u>				1-	I

Menu No.	Menu Name	Instruction	Parameter Range	Default Value	Unit
	check mode	check mode during 485 communication, support RTU mode only	1:E,8,1 2:O,8,1 3:N,8,2 4:E,8,2 5:O,8,2		
25	485 communication baud rate selection	The baud rate when selecting 485 communication by parameters	[9600,19200, 38400,57600, 115200]	9600	bps
26	CANOpen communication node number	Set the local (slave) communication node number during CAN communication	[1-127]	32	
27	CANOpen communication baud rate	The baud rate when selecting CAN communication by parameters	[1000,500, 250,125,50, 20]	500	kbps

5.3.5 Parameter Programming Menu List

Menu No.	Menu Name	Meaning
1 st scre	en	
0	Parameter programming	Program internal RAM parameter of the drive to EEPROM
1	Restore default value	Used to restore the default parameters
2	Read parameters in batches	Read the parameters in EEPROM in DSP in batches
3	Program parameters in batches	Write parameters into the EEPROM in DSP in batches
4	Delete parameters in batches	Delete the parameters stored in EEPROM in HMI
5	Fault record check	Read fault record

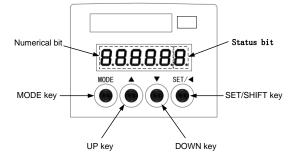
When "restore default setup" is executed and "parameter programming" is not executed, if drive is powered off and re-powered on; the default parameter will not be restored.

* After "programming parameters in batches" is executed, the drive needs to be powered off and re-powered on for the parameters written into EEPROM to be effective.

Menu Parameter Default Unit Menu Name Meaning No. Value Range 1st screen Related to the Disable 0 Operation enable Turn on/off motor drive function drive enable Enable IO level Disable 1 Diagnosis enable Turn on/off diagnosis function Disable Enable Motor model Refer to 5.5.5 U1013F. 2 Motor model selection for details 17.3 PUMP 100 Pump model Refer to 5.5.5 3 Oil pump model selection for details mL/r Pressure The zero position offset of Pressure feedback zero pressure sensor can be feedback zero 4 position removed by pressure feedback position calibration zero position calibration calibration Initial angle test can be done Measure initial Disable 5 only when operation enable is Disable angle Enable voided 2nd screen Set the pressure full range of the node This value will set both the pressure full range and max pressure value and meanwhile, Pressure full 6 adjust the pressure reference [1,250] 175 bar range gain to make the pressure reference correspond to the newly set pressure full range value when pressure reference input is 9.9V Set the flow full range of the node This value will set both the flow full range and max flow value 200 L/min 7 Flow full range [1,2400] and meanwhile, adjust the flow reference gain to make the flow reference correspond to the newly set flow full range

5.3.6 Shortcut Menu List

Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
		value when flow reference input is 9.9V			
8	Pressure zero position calibration	Calibrate when the upper PC outputs corresponding analog signal	Disable Enable	Disable	
9	Pressure full range calibration	Calibrate when the upper PC outputs corresponding analog signal	Disable Enable	Disable	
10	Flow zero position calibration	Calibrate when the upper PC outputs corresponding analog signal	Disable Enable	Disable	
11	Flow full range calibration	Calibrate when the upper PC outputs corresponding analog signal	Disable Enable	Disable	
3 rd scr	een		•		
12	Parameter programming	Program the internal RAM parameter of the drive to EEPROM	Parameter programming	Parameter programming	
13	Jogging enable	Valid only if diagnosis enable is turned on, after the key enters jogging mode, press "forward" or "backward" key to make the motor rotate forward or backward.	Disable Enable	Disable	
14	Motor parameter autotuning (valid only if diagnosis enable is turned on)	During motor autotuning, input motor nameplate parameters first, the precision of the motor parameters obtained by "static" mode depends on the accuracy of motor nameplate parameter, when "dynamic" mode is used, no-load or light-load of motor is required to obtain accurate motor parameters	0: Disable 1: Dynamic 2: Static	Disable	
15	Pressure sensor model selection	Pressure sensor type	5v 10v 400bar	10v	


Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit			
	Pressure	The 0 th step of proportional						
16	proportional gain	parameter of pressure PID	[0,32767]	13000				
	0	control						
	Pressure integral	The 0 th step of integral						
17	gain 0	parameter of pressure PID	[0,32767]	100				
	gain o	control						
4 th scr	een							
	Pressure	The 1 st step of proportional						
18	proportional gain	parameter of pressure PID	[0,32767]	13000				
	1	control						
	Pressure integral	The 1 st step of integral						
19	gain 1	parameter of pressure PID	[0,32767]	100				
	gain	control						
	Speed	The 0 th step of proportional						
20	proportional gain	parameter of speed PI control	[0,32767]	7000				
	0							
21	Speed integral	The 0 th step of integral	[0,32767]	140				
	gain 0	parameter of speed PI control		-				
	Speed proportional gain	The 1 st step of proportional	[0,32767]	7000				
22		parameter of speed PI control						
	1 On a set internet							
23	Speed integral	The 1 st step of integral	[0,32767]	140				
-th	gain 1	parameter of speed PI control						
5 th scr	reen		Γ					
		Set whether to use multi-step						
24	Multi-step PID	mode for speed PI parameter	Disable	Disable				
	quick setup	and pressure PID parameter	Enable					
		simultaneously						
		Speed proportional gain						
25	Speed proportion	parameter increases based on	[0 4000]	0	%			
25	torque boost	this parameter according to the	[0,1000]	0	%			
		ratio of feedback torque and						
		max motor torque Speed integral gain parameter						
		increases based on this						
26	Speed integral	parameter according to the	[0,1000]	0	%			
20	torque boost	ratio of feedback torque and	[0,1000]	U III	70			
		max motor torque						
L	1		I	1				

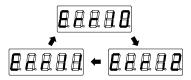
Menu No.	Menu Name	Meaning	Parameter Range	Default Value	Unit
27	Pump reverse rotation speed limit	Max reverse speed of oil pump	[0,-6000]	-300	rpm
28	Upper limit of reverse torque	Proportional coefficient of max motor reverse torque reduction	[0,100]	100	%
29	29 Over-pressure Upper limit of over-pressur protection value alarm		[0,250]	195	bar
6 th screen					
30	Pump stuck detection				

5.4 LED Display and Operation

5.4.1 LED Panel Instruction

Displ ayed Char acter	Corresp onding Letter										
8	0		1	80	2	B	3	В	4	8	5
8	6		7	8	8	8	9	8	A	8	b
B	С	8	d	8	E	E	F	6	G	8	н
	I		J	E.	к	E	L	8	М		N
	0	8	Ρ		q		R	Ð	S	E	т
E	U		V		W		х	Ξ	Y		Z
8			-								

Button	Instruction	Button	Instruction
MODE	Menu skip and cancel button		Upward button
SET/4	Long press (about 0.5s): set Short press: move leftward		Downward button


LED display reference table:

LED digital tube is lit up once servo drive is powered on. The first five characters display the value, and the last one indicates system state. LED value bit displays motor speed (rpm) by default (precision reaches to ones).

If fault occurred during power on or operation, the decimals points of LED state bit will flicker at 1s interval, and LED value bit will display fault code. The fault code is comprised of fault identifier (the first three bits from left to right of digital tube display Err) and fault code number (the last two bits from left to right of digital tube display. After fault occurred, the fault code flickers at 1s interval.

If multiple faults occurred simultaneously, then multiple fault codes will display cyclically.

Keypad unlock:

A. In speed or fault display state, to operate on the keypad, users need to keep ▲ and ▼ keys pressed down for 1s, and the LED value bit will display ULOCK, which means the system keypad is unlocked and ready to be operated.

If the drive is in good condition, the drive keypad operation enters shortcut mode; if the drive is faultv. users need to press to enter shortcut mode.

During keypad operation, if () and () are pressed together for 1s, LED value bit will display

LOCK which means the system keypad is locked, and LED value bit returns to speed or fault display state.

B. Users can also unlock the keypad in speed or fault display state by entering password. Press

key to enter password input prompt interface (press to return to the
previous interface), and press SET key to enter password input interface
key to return to the previous interface), users can change the flickering bit by 🕙 key and
change the value of the flickering bit via \blacktriangle or \blacktriangledown . After password is set, press set, we vand if the password is correct, it will enter shortcut mode, if not, enter password error interface
and after staying for a few seconds, enter password input interface. The initial password is 0.
When the negative number is less than 9999, the five-bit LED cannot display "-" (negative);

when the decimal points of 1, 2, 3 and 4 are lit up, it means negative number

5.4.2 LED State Bit Instruction

The last bit of LED digital tube displays in real time the present running state of MH800 system, and its meaning is shown below:

No.	Displayed Content	Cycle	Control State
1	8	1s	Electronic
2	B	0s	Electricity
3	8.	0s	Ready to run
4	8.	1s	Run
5		1s	Fault
6	8	2s	Diagnosis
7	E.	2s	Factory test

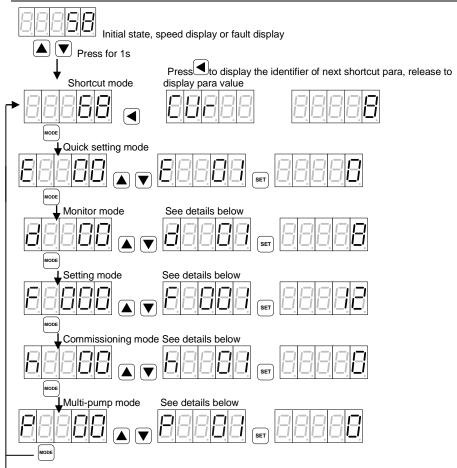
5.5 LED Panel Function

5.5.1 Keypad Operation Mode

This drive carries six kinds of keypad operation modes which can be switched via $\frac{1}{1000}$ key after keypad is unlocked.

Shortcut mode: used to display critical parameters

Quick setting mode: used to set critical setup parameters and motor commissioning


Monitor mode: used to display state parameter

Setting mode: used to set basic parameters

Commissioning mode: used for motor commissioning and parameter storage

Multi-pump mode: used to set multi-pump parallel parameters

The operation flowchart is shown below:

5.5.2 Short-cut Mode

Users can observe critical parameters of the drive under shortcut mode via pressing key. When and repressed simultaneously for 1s in LOCK state, it will enter "shortcut mode" and LED displays the selected parameter value; press , LED displays the next parameter identifier to be displayed, release key, LED displays corresponding parameter value.

W Under shortcut mode, if no button operation is performed within 4 minutes, it will switch to speed and fault display interface automatically.

Shortcut mode display parameter table:

Identifier	Definition and Instruction	Parameter Range	Unit
SPD	Speed feedback	[-6000,6000]	rpm

Identifier	Definition and Instruction	Parameter Range	Unit
CUR	Current feedback	[0,900.0]	А
RES	Resolver feedback	[0,4096]	
PRS	Pressure feedback	[-250,250]	bar
PIDS	PID step number	[0,3]	

5.5.3 Quick Setting Mode

and the parameter value can be changed again. Press key to exit.
stop the flickering, then if ${}^{ m ser}$ or $igle V$ is pressed again, the bit which can be modified will flicker
the flickering bit via 🌢 or 🔍. After modification, press 🖅 key to save the modified value and
modifying parameter value, users can change the flickering bit via 🔍 key and modify the value of
be set, and then press [set] key, LED value bit will display corresponding parameter value. When
represents different parameter identifiers. Press 🔺 or 💟 key to select the parameter identifier to
When pressing 🔤 key to select "quick setting mode", LED value bit displays "Exx", in which xx

Code	Definition and Instruction	Parameter	Default	Unit
	Operation enable	Range	Value	
			Related to	
E00	Press key to enter operation enable mode, LED	OFF: Disable	drive	
	displays operation enable state "ON" or "OFF", press	ON: Enable	enable IO	
	to switch operation enable state.		level	
E01	LED displays the selection number and the last two bits are the motor model code, press or key to select the motor to be set; press set key, LED displays to set the motor. If setup is performed properly, newly selected motor model will be displayed, if failed, the LED displays	See motor model list below for details	U1013F. 17.3	
E02	Pump model selection LED displays , in which the first two bits are selection number and the last three bits are oil pump displacement, press or key to select the oil pump to be set; press key, LED displays to set the oil pump. If setup is performed properly, the newly selected oil pump model will be displayed, if failed, the LED displays .	See oil pump model list below for details	PUMP 100 mL/r	
E03	Pressure feedback zero position calibration LED displays pressure sensor analog voltage feedback value, press ser to calibrate, if calibration is succeeded,			

Code	Definition and Instruction	Parameter Range	Default Value	Unit
	LED displays			
E04	Measure initial angle Initial angle test can be done only when operation enable is OFF. Press ser key to enter measure initial angle menu, and LED displays the previous resolver offset quantity, press ser key to start measuring initial angle, and LED displays of the previous resolver offset is on. After measuring is succeeded, LED displays newly measured resolver offset quantity, if failed, LED displays Definition. During measuring, users can press MODE key to exit.			
E05	Pressure full range This value sets the pressure full range and max pressure value simultaneously, and meanwhile, adjusts the pressure reference gain to make the pressure reference correspond to the newly set pressure full range value when pressure reference is 9.9V. After entering, present pressure full range value will be displayed, press keys to change to the desired value and press key to confirm.	[1,250]	175	bar
E06	Flow full range This value sets the flow full range and max flow value simultaneously, and meanwhile, adjusts the flow reference gain to make the flow reference correspond to the newly set flow full range value when flow reference is 9.9V. After entering, present flow full range value will be displayed, press keys to change to the desired value and press set wey to confirm.		200	L/min
E07	Pressure zero position calibration After pressing set key, LED displays pressure reference analog value, press SET key to perform pressure zero position calibration, and LED displays If calibration is succeeded, LED displays	Analog voltage range [0.00,9.99]		V
E08	Pressure full range calibration After pressing ^{SET} key, LED displays present pressure reference analog value, confirm the value and press ^{SET} key to perform pressure full range calibration, and LED	Analog voltage range [0.00,9.99]		V

Code	Definition and Instruction	Parameter Range	Default Value	Unit
	displays			
E09	Flow zero position calibration After pressing ^{ser} key, LED displays flow reference analog value, press SET key to perform flow zero position calibration, and LED displays . If calibration is succeeded, LED displays , if failed, LED displays	Analog voltage range [0.00,9.99]		V
E10	Flow full range calibration After pressing ^{ser} key, LED displays present flow reference analog value, confirm the value and press ^{ser} key to perform flow full range calibration, and LED displays	Analog voltage range [0.00,9.99]		V
E11	Parameter programming After pressing SET key, LED displays ser key to start parameter programming, and LED displays displays displays displays displays			
E12	Jogging After pressing set key to enter jogging mode, LED displays "JOG", then press or vertice key to make the motor rotate forward or backward, press weekey can exit from jogging mode and return to "Exx" menu.	Erorward Ereverse		
E13	Diagnosis enable Press ser key to enter diagnosis enable mode, and LED displays diagnosis enable state "ON" or "OFF", press ser to switch diagnosis enable state.	OFF: Disable ON: Enable	OFF	

Code	Definition and Instruction	Parameter	Default	Unit
		Range	Value	
E14	Motor parameter autotuning Effective only if diagnosis enable activates motor parameter autotuning function. Press ^{ser} key to enter motor parameter autotuning menu, and LED displays "0", select the parameter autotuning mode and press ^{ser} key to start motor parameter autotuning. When LED displays autotuning is on. If autotuning is succeeded, LED displays , if failed, LED displays autotuning, users can press ^{wore} key to exit form autotuning, and LED displays	0: Disable 1: Dynamic 2: Static	0: Disable	
E15	Pressure sensor model selection	5V:1 – 5V sensor 10V: 0 – 10V sensor	10V	
E16	Pressure proportional gain	[0,32767]	13000	
E17	Pressure integral gain	[0,32767]	100	
E18	Speed proportional gain	[0,32767]	7000	
E19	Speed integral gain	[0,32767]	170	
E20	Speed proportional torque boost	[0,1000]	0	%
E21	Speed integral torque boost	[0,1000]	0	%
E22	Max speed of pump reverse rotation	[0,-6000]	-300	Rpm
E23	Upper limit of reverse torque	[0,100]	100	%
E24	Over-pressure protection value	[0,500]	195	bar
E25	Pump stuck detection	0: Disable 1: Enable	1: Enable	

% See <u>5.3.2</u>, <u>5.3.3</u> and <u>5.3.5</u> for parameter instruction.

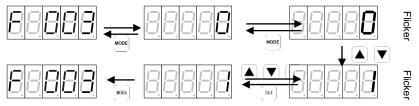
5.5.4 Monitoring MODE

When pressing $\underbrace{\text{wooe}}$ key to select "monitor mode", LED value bit displays "d--xx", in which xx is the identifier of the parameter. Press \bigtriangleup or \bigvee key to select the parameter identifier to be displayed and press $\underbrace{\text{ser}}$ after selection, then the LED panel will display corresponding parameter value, press $\underbrace{\text{sev}}$ key to exit.

W Under monitor mode, if there is no button operation within 4m, the system will switch to speed and fault display interface automatically.

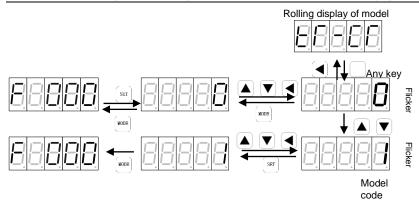
The definition of the monitor parameters of the drive is shown below:

Code	Name	Parameter Range	Unit
d00	Flow reference	[0,2400.0]	L/min
d01	Pressure reference	[0,250.0]	bar
d02	System fault	System fault alarm (can display multiple faults which	
002	System lault	occurred simultaneously)	
d03	Motor current	[0,900.0]	А
d04	AC voltage	[0,500]	Vrms
d05	DC voltage	[0,800]	V
d06	Torque limit	[0,1800]	Nm
d07	Speed feedback	[-6000,6000]	Rpm
d08	Resolver feedback	[0,32767]	
d09	Pressure feedback	[-250,250]	bar
d10	Torque feedback	[-1800,1800]	Nm
-14.4	Durania a ara da	3: Speed mode	
d11	Running mode	4: Process mode	
d12	Motor temperature	[-52,244]	°C
d13	Drive temperature	[-46,244]	°C
d14	Ambient temperature	[-18,114]	°C
d15	Machine material	[0,999]	
d16	DSP software version		
d17	Panel software version		
d18	Max system pressure	[0,250.0]	bar
d19	Max system flow	[0,2400.0]	L/min
d20	Power	[0.00,327.67]	kW
-10.4	O	0: Single pump; 1: Composite; 2: Multi-pump; 3:	
d21	Converging type	Multi-mode	
d22	Present PID step	[0,3]	
d23	Flow reference voltage	[0,10.00]	V
d24	Pressure reference voltage	[0,10.00]	V
d25	Pressure feedback voltage	[0,10.00]	V
d26	Output voltage	[-1000,1000]	V

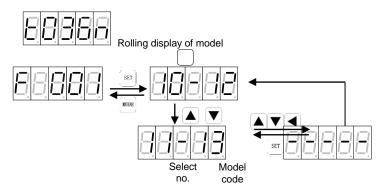

Code	Name	Parameter Range	Unit
d27	Digital IO	If input port indicator lights up, it means high level); if output port indicator lights up, it means cut-off	
d28	Motor configuration table version		

※ See <u>5.3.1</u> for parameter instructions.

5.5.5 Setting Mode

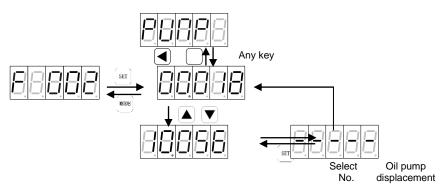

When pressing $\underbrace{\text{wore}}$ key to select "setting mode", LED value bit displays "F--xx", in which xx is the parameter identifier. Press \bigtriangleup or \bigtriangledown key to select the parameter identifier to be set and press $\underbrace{\text{serr}}$ key after selection, then LED panel will display corresponding parameter value. Press or \bigtriangleup key the bit which can be modified will flicker. When modifying parameter values, users can change the flickering bit by key and modify the value of the flickering bit via or $\bigodot{}$. After modification, press $\underbrace{}^{\text{serr}}$ key to save the modified parameter and stop the flickering, then press $\underbrace{}^{\text{serv}}$ again to re-modify the parameter value and the bit can be modified will flicker. Press $\underbrace{}^{\text{serv}}$ key to exit.

The selection of drive, motor and oil pump differ with other parameter selections, see details below: Parameter setup operation flowchart:



For calibration command eg pressure linear zero position calibration, if LED displays 0 after setup, it means calibration is succeeded; if LED keeps displaying 1, it means calibration is failed.

Drive setup operation flowchart:


Motor setup operation flowchart:

Select no.: the serial number for each motor model.

Model code: the code of each motor model

Oil pump setup operation flowchart:

Select no.: the serial number of each oil pump model.

- W Under setting mode, if there is no button operation within 4m, the system will switch to speed and fault display interface automatically.
- 1) Drive model list

Drive Selection Order	LED Display Mode	Drive Model	Drive Model Code
2	4r4-0	SV-MH800-4R4-33-S	42
3	5r5-0	SV-MH800-5R5-33-S	43
4	7r5-0	SV-MH800-7R5-33-S	44
5	011-0	SV-MH800-011-33-S	45
6	015-0	SV-MH800-015-33-S	46
7	018-0	SV-MH800-018-33-S	47
8	025-0	SV-MH800-025-33-S	48
9	030-0	SV-MH800-030-33-S	49
10	035-0	SV-MH800-035-33-S	50
11	045-0	SV-MH800-045-33-S	51
12	055-0	SV-MH800-055-33-S	52
13	075-0	SV-MH800-075-33-S	53

2) Motor model list:

Motor Selection No.	Motor Model	Motor Model Code	Brand	Winding Temperature Resistor Model
0	K038F18C18P	60	KINWAY	Pt1000
1	K036F20C18P	65	KINWAY	Pt1000
2	K058F18C18P	33	KINWAY	Pt1000
3	K060F18C18P	66	KINWAY	Pt1000
4	K072F18C18P	61	KINWAY	Pt1000
5	K091F15C18P	34	KINWAY	Pt1000
6	K111F15C18P	35	KINWAY	Pt1000
7	K132F18C18P	62	KINWAY	Pt1000
8	K187F18C25P	63	KINWAY	Pt1000
9	K208F15C25P	98	KINWAY	Pt1000
10	K070F20D18P	68	KINWAY	Pt1000
11	K087F20D18P	64	KINWAY	Pt1000
12	K105F20D18P	69	KINWAY	Pt1000
13	K189F15D25P	70	KINWAY	Pt1000
14	K172F18D25P	71	KINWAY	Pt1000
15	K260F20D25P	72	KINWAY	Pt1000
16	K053F20E18P	47	ANXIN	KTY84
17	K070F20E18P	48	ANXIN	KTY84

Motor Selection No.	Motor Model	Motor Model Code	Brand	Winding Temperature Resistor Model
18	K087F20E18P	49	ANXIN	KTY84
19	K105F20E18P	50	ANXIN	KTY84
20	K189F15E25P	51	ANXIN	KTY84
21	K172F18E25P	52	ANXIN	KTY84
22	K260F20E25P	53	ANXIN	KTY84
23	U1004F.15.3	12	PHASE	KTY84
24	U1004F.17.3	13	PHASE	KTY84
25	U1004F.20.3	14	PHASE	KTY84
26	U1005F.15.3	15	PHASE	KTY84
27	U1005F.17.3	16	PHASE	KTY84
28	U1005F.20.3	17	PHASE	KTY84
29	U1007F.15.3	18	PHASE	KTY84
30	U1007F.17.3	9	PHASE	KTY84
31	U1007F.20.3	19	PHASE	KTY84
32	U1008F.15.3	20	PHASE	KTY84
33	U1008F.17.3	21	PHASE	KTY84
34	U1008F.20.3	22	PHASE	KTY84
35	U1010F.15.3	6	PHASE	KTY84
36	U1010F.18.3	10	PHASE	KTY84
37	U1010F.20.3	4	PHASE	KTY84
38	U1013F.15.3	23	PHASE	KTY84
39	U1013F.17.3	24	PHASE	KTY84
40	U1013F.18.3	25	PHASE	KTY84
41	U1013F.20.3	8	PHASE	KTY84
42	U1320F.15.3	26	PHASE	KTY84
43	U1320F.17.3	11	PHASE	KTY84
44	U1320F.18.3	27	PHASE	KTY84
45	U1320F.20.3	28	PHASE	KTY84
46	U1330F.15.3	36	PHASE	KTY84
47	U1330F.18.3	37	PHASE	KTY84
48	U1330F.20.3	38	PHASE	KTY84
49	S18-357	41	SHENDA	KTY84
50	S18-480	42	SHENDA	KTY84
51	S18-5103	43	SHENDA	KTY84
52	S18-6128	44	SHENDA	KTY84
53	S18-8186	45	SHENDA	KTY84
54	S25-4230	40	SHENDA	KTY84

Motor Selection No.	Motor Model	Motor Model Code	Brand	Winding Temperature Resistor Model
55	K130F22C18P	90	KINWAY	KTY84
56	K135F25C25P	91	KINWAY	KTY84
57	K341F18C25P	30	KINWAY	Pt1000
58	K105F20C18P	31	KINWAY	Pt1000
59	K122F23C25P	92	KINWAY	Pt1000
60	K148F21C25P	93	KINWAY	Pt1000
61	K148F23C25P	94	KINWAY	Pt1000
62	K194F23C25P	95	KINWAY	Pt1000
63	K224F23C25P	96	KINWAY	Pt1000
64	K240F22C25P	97	KINWAY	Pt1000
65	K290F18C25P	99	KINWAY	Pt1000
66	K395F15C25P	100	KINWAY	Pt1000
67	MM18-5R5B47	101	KINWAY	Pt1000
68	MM18-4R4B47	102	KINWAY	Pt1000
69	K156F20E25P	58	ANXIN	KTY84
70	K235F20C25P	78	KINWAY	Pt1000
71	U1315F.15.3	59	PHASE	KTY84
72	K078F20C18P	79	KINWAY	Pt1000
73	K239F18C25P	83	KINWAY	Pt1000

Note: If the motor selected is not listed in above table, users can obtain relevant motor parameters by motor parameter autotuning. See <u>6</u>. *Motor parameter autotuning* for details.

3) Oil pump model list:

Oil Pump Selection No.	Oil Pump Model	Oil Pump Displacement mL/r	Default Max Flow
0	PUMP 018 mL/r	18	40 L/min
1	PUMP 025 mL/r	25	55 L/min
2	PUMP 028 mL/r	28	62 L/min
3	PUMP 031 mL/r	31	68 L/min
4	PUMP 032 mL/r	32	70 L/min
5	PUMP 036 mL/r	36	79 L/min
6	PUMP 037 mL/r	37	81 L/min
7	PUMP 040 mL/r	40	88 L/min
8	PUMP 045 mL/r	45	99 L/min
9	PUMP 050 mL/r	50	110 L/min
10	PUMP 056 mL/r	56	123 L/min
11	PUMP 062 mL/r	62	136 L/min

Oil Pump Selection No.	Oil Pump Model	Oil Pump Displacement mL/r	Default Max Flow
12	PUMP 063 mL/r	63	139 L/min
13	PUMP 064 mL/r	64	141 L/min
14	PUMP 071 mL/r	71	142 L/min
15	PUMP 075 mL/r	75	150 L/min
16	PUMP 078 mL/r	78	156 L/min
17	PUMP 080 mL/r	80	160 L/min
18	PUMP 090 mL/r	90	180 L/min
19	PUMP 100 mL/r	100	200 L/min
20	PUMP 101 mL/r	101	202 L/min
21	PUMP 120 mL/r	120	240 L/min
22	PUMP 125 mL/r	125	250 L/min
23	PUMP 130 mL/r	130	260 L/min
24	PUMP 140 mL/r	140	280 L/min
25	PUMP 150 mL/r	150	300 L/min
26	PUMP 160 mL/r	160	320 L/min

Parameter table definition of setting mode is shown below:

Code	Definition and Instruction	Parameter Range	Default Value	Unit
F000	Drive model selection	See drive model list	The same with	
FUUU	Drive model selection	above for details	drive label	
F001	Motor model selection	See motor model list	U1013F.17.3	
1001		above for details	010131.17.3	
F002	Pump model selection	See oil pump model list	PUMP 100	
1 002	Fullp model selection	above for details	mL/r	
F003	Pressure feedback zero	0: No calibration	0	
1005	position calibration	1: Calibration	0	
		0: Linear pressure		
F004	Pressure calibration mode	calibration	0	
1 004		1: Polyline pressure		
		calibration		
		0: Linear flow calibration		
F005	Flow calibration mode	1: Polyline flow	0	
		calibration		
		0: No action		During linear
		1: Linear zero position		zero position or
F006	Pressure calibration	2: Linear range	0	range
1000	FIESSUIE CAIIDIAUOTI	3: Polyline point 0	°	calibration, if
		4: Polyline point 1		LED displays
		5: Polyline point 2		0, it means

Code	Definition and Instruction	Parameter Range	Default Value	Unit
		6: Polyline point 3		calibration is
		7: Polyline point 4		succeeded,
		8: Polyline point 5		otherwise, it is
		9: Polyline point 6		failed. For
		10: Polyline point 7		polyline
		11: Polyline point 8		calibration, if
		12: Polyline point 9		LED displays
		13: Polyline point 10		the original
		14: Polyline point 11		value after
		15: Polyline point 12		setup, it means
				calibration is
				succeeded,
				otherwise, it is
				failed
				During linear
				zero position or
		0: No action		range
		1: Linear zero position		calibration, if
		2: Linear range		the LED
		3: Polyline point 0		displays 0, it
		4: Polyline point 1		means
		5: Polyline point 2		calibration is
		6: Polyline point 3		succeeded,
F007	Flow calibration	7: Polyline point 4	0	otherwise, it is
1007	TIOW Calibration	8: Polyline point 5	0	failed. After
		9: Polyline point 6		polyline
		10: Polyline point 7		calibration, if
		11: Polyline point 8		LED displays
		12: Polyline point 9		the original
		13: Polyline point 10		value, it means
		14: Polyline point 11		calibration is
		15: Polyline point 12		succeeded,
				otherwise, it is
				failed.
				Moving
F008	Pressure filter	[1,32]	6	average
F008	Flessule liller	[1,32]	0	sampling
				times(1ms)
F009	Flow filter	[1,32]	6	Moving
1009		[1,02]	0	average

Code	Definition and Instruction	Parameter Range	Default Value	Unit
				sampling
				times(1ms)
F010	Pressure full range This value will set pressure full range and max pressure value simultaneously, and meanwhile, adjust the pressure reference gain to make the pressure reference correspond to the newly set pressure full range value when pressure reference input is 9.99V	[1,250]	175	bar
F011	Flow full range This value will set flow full range and max flow value simultaneously and meanwhile, adjust the flow reference gain to make the flow reference correspond to the newly set flow full range value when flow reference input is 9.99V	[1,2400]	200	L/min
F012	Max pressure	[0,250]	180	bar
F013	Max flow	[0,2400]	220	L/min
F014	Speed proportional gain	[0,32767]	7000	
F015	Speed integral gain	[0,32767]	170	
F016	Pressure feedback gain	[0,32767]	8182	
F017	Pressure reference rising slope	[0,32767]	16000	
F018	Pressure reference declining slope	[0,32767]	16000	
F019	Pressure proportional gain 0	[0,32767]	13000	
F020	Pressure integral gain 0	[0,32767]	100	
F021	Pressure differential gain 0	[0,32767]	0	
F022	Pressure proportional gain 1	[0,32767]	13000	
F023	Pressure integral gain 1	[0,32767]	100	
F024	Pressure differential gain 1	[0,32767]	0	
F025	Pressure proportional gain 2	[0,32767]	13000	

Code	Definition and Instruction	Parameter Range	Default Value	Unit
F026	Pressure integral gain 2	[0,32767]	100	
F027	Pressure differential gain 2	[0,32767]	0	
F028	Pressure proportional gain 3	[0,32767]	13000	
F029	Pressure integral gain 3	[0,32767]	100	
F030	Pressure differential gain 3	[0,32767]	0	
F031	Pump displacement	[0,32767]	100	mL/r
F032	Pump leakage	[0,1.00]	0	L/min/bar
F033	Max pump reverse speed	[0,-6000]	-300	rpm
F034	Max motor speed	[0,6000]	2200	rpm
F035	DC voltage calibration	[0,800](fine tuning only)	DC voltage when entering the menu	V
F036	AC voltage calibration	[0,800](fine tuning only)	AC voltage when entering the menu	V
F037	Base flow enable	0: no base flow 1: with base flow	0	
F038	Base flow pressure	[0,250.0]	3	bar
F039	Flow of base flow	[0,327.67]	0.95	L/Min
F040	Overshoot limit value	[5,50]	30	bar
F041	Motor rotation direction	0: Forward 1: Reverse	0	
F042	Resolver direction	0: Forward 1: Reverse	0	
F043	Backpressure mode	0: Manual 1: Automatic	0	
F044	Pressure sensor model selection	5V 10V 400bar	10V	
F045	Plunger pump model selection	0: Single displacement 1: Dual displacement	0	
F046	Plunger pump displacement ratio	[0,100.0]	20	%
F047	Wobble plate switching pressure threshold	[0,250.0]	195	bar
F048	Displacement pressure judging delay	[0,32767]	100	ms
F049	DA1	0: Pressure reference	1	

Code	Definition and Instruction	Parameter Range	Default Value	Unit
0000	Dominion and motifaction	1: Pressure feedback	Dorault Value	Unit
		2: Flow reference		
		3: Flow feedback		
		4: Speed reference		
		5: Speed feedback		
		6: Torque reference		
		7: Torque feedback		
		8: Resolver feedback		
		9: DC voltage		
		10: Phase current		
		11: Fault word 1		
		12: Fault word 2		
		13: Communication		
		command		
F050	DA1 max value	[-32767,32767]	32767	
F051	DA1 min value	[-32767,32767]	0	
		0: Pressure reference		
		1: Pressure feedback		
		2: Flow reference		
		3: Flow feedback		
		4: Speed reference		
		5: Speed feedback		
		6: Torque reference		
F052	DA2	7: Torque feedback	5	
		8: Resolver feedback		
		9: DC voltage		
		10: Phase current		
		11: Fault word 1		
		12: Fault word 2		
		13: Communication		
		command		
F053	DA2 max value	[-32767,32767]	16384	
F054	DA2 min value	[-32767,32767]	-16384	
F055	DA output value	[-32767, 32767]	0	
F056	Wobble plate switching rising delay	[0, 32767]	10	ms
F057	Wobble plate switching declining delay	[0, 32767]	10	ms
F058	Upper limit of speed switching	[0, 6000]	1200	rpm
F059	Lower limit of speed switching	[0, 6000]	200	rpm

Code	Definition and Instruction	Parameter Range	Default Value	Unit
F060	Flow reference zero position deadzone	[0.00, 100.00]	0.5	%
F061	Pressure reference zero position deadzone	[0.00, 100.00]	0.5	%
F062	Pressure feedback zero position deadzone	[0.00, 100.00]	0	%
F063	OUT2 connection pressure coefficient	[0.00, 100.00]	90	%
F064	Negative torque suppression control	0: Disable 1: Enable	0	
F065	Displacement switching mode	0: Overpressure 1: Overpressure during holding pressure	0	
F066	Restore default parameters	0: Disable 1: Restore	0	
F067	Check fault record (display fault code)	1: Fault 1 2: Fault 2 3: Fault 3 4: Fault 3 4: Fault 4 5: Fault 5 After entering, it displays the last fault occurred (no. is 1). Press		

Code	Definition and Instruction	Parameter Range	Default Value	Unit
		B phase current (Apk)		
		88888		
		Motor current(A)		
		<u>ABBBB</u>		
		<u> </u>		
		Drive temperature (°C)		
		Motor temperature (°C)		
		Speed reference (rpm)		
		torque reference (Nm)		
		output voltage (V)		
		Fault type		
		Parameter		
F068	Parameter programming	programming After pressing SET key, LED displays set key to start parameter programming, LED displays If programming is succeeded, LED displays		
F069	Keypad unlock password	[0,99999]	00000	
F070	Rated motor voltage	[0,800]	334	V
F071	Rated motor current	[0,900]	64	A
F072	Rated motor speed	[0,6000]	1467	rpm
F073	Rated motor frequency	[0,600]	97.8	Hz
F074	Motor counter-emf	[0.0,800.0]	183.1	V/Krpm

Code	Definition and Instruction	Parameter Range	Default Value	Unit
		0: NTC		
		1: PTC		
F075	Motor temperature sensor	2: KTY84	2	
		3: PT1000		
F076	Reserved			
F077	Reserved			
F078	Reserved			
F079	Pressure sensor range	[0,250.0]	250	bar
	Pressure feedback			
F080	fine-turning coefficient	[50,200]	100	%
F081	Min value of flow reference	[0,2400.0]	0	L/min
F082	Over-modulation enable	[0,1]	0	1: Enable
F083	Over-modulation ratio	[100,115]	105	%
F084	Carrier frequency	[4k,5k,8k,10k,3k,2k]	3k	Hz
		[0: Current limit mode,		
F085	Overload protection mode	1: It protection mode, 2,	0	
		3: Reserved]		
F086	Bus overvoltage protection@	[0,1000]	750	V
F087	Bus overvoltage protection @ time	[0,30000]	20	5ms
F088	Bus overvoltage protection	[0,1000]	780	V
F089	Bus undervoltage protection@	[0,1000]	380	V
F090	Bus undervoltage protection @ time	[0,30000]	150	5ms
F091	Bus undervoltage protection	[0,1000]	320	V
F092	Bus undervoltage protection during enable	[0,1000]	315	v
F093	AC overvoltage protection@	[0,1000]	487	V
F094	AC overvoltage protection @ time	[0,30000]	40	5ms
F095	AC overvoltage	[0,1000]	495	V
F096	AC undervoltage protection@	[0,1000]	290	V
F097	AC undervoltage protection @ time	[0,30000]	100	5ms
F098	AC undervoltage	[0,1000]	0	V
F099	Time of power-on overtime	[0,30000]	2000	5ms
F100	Motor protection temperature	[0,500]	125	°C
F101	Module protection temperature	[0,500]	86	°C

Code	Definition and Instruction	Parameter Range	Default Value	Unit
F102	Air protection temperature	[0,500]	400	°C
			4R4→50	
			5R5→70	
			7R5→95	
			011→105	
			015→120	
F103	Overaurrent protection value	[0 000]	018→180	٨
F103	Overcurrent protection value	[0,900]	025→220	A
			030→260	
			037→360	
			045→440	
			055→480	
			075→530	
F104	Forward speed protection	[0,6000]	2700	rpm
F104	value	[0,0000]	2700	ipin
F105	Reverse speed protection	[-6000,0]	-2700	rpm
1105	value	[-0000,0]	-2700	ipin
F106	Overpressure protection value	[0,250]	195	bar
F107	Pressure sensor fault value	[0,32767]	0	
F108	ACDC sampling error voltage	[0,800]	80	V
			4R4→35	
			5R5→35	
			7R5→35	
			011→35	
			015→69	
F109	Brake resistor heating factor	[0,500]	018→69	
1103	Drake resistor heating racio	[0,000]	025→69	
			030→40	
			037→40	
			045→40	
			055→40	
			075→0	
F110	Brake resistor cooling factor	[0,500]	1	
			4R4→374	
			5R5→374	
	Brake resistor overload		7R5→374	
F111	threshold	[0,30000]	011→374	
	unconoid		015→374	
			018→374	
			025→374	

Code	Definition and Instruction	Parameter Range	Default Value	Unit
			030→292	
			037→292	
			045→292	
			055→292	
			075→374	
F112	Motor short-circuit protection value	[0,900]	10	A
F113	Phase loss protection selection	0: Disable 1: Enable	1	
F114	Rectification overload	0: Disable	Disable	
F114	protection selection	1: Enable	Disable	
F115	Speed feedback filter mode	0: Moving average;1: Least squares; Effective only after re-power on	0	
F116	Speed proportional gain1	[0,32767]	7000	
F117	Speed integral gain 1	[0,32767]	170	
F118	Speed gain switching speed 0	[0,6000]	5994	rpm
F119	Speed gain switching speed 1	[0,6000]	5994	rpm
F120	Speed control rigidness	[1,14]	9	
F121	Motor inertia	[0,0.655]	0.018	Kgm2
F122	Motor torque coefficient	[0,100.00]	2.6	Nm/Arms
F123	Motor autotuning direction	0: Forward;1: Reverse	0	
F124	Rated drive power	[0.00,327.67]	$\begin{array}{c} 4\text{R4} \rightarrow 4.40 \\ 5\text{R5} \rightarrow 5.50 \\ 7\text{R5} \rightarrow 7.50 \\ 011 \rightarrow 11.00 \\ 015 \rightarrow 15.00 \\ 018 \rightarrow 18.00 \\ 025 \rightarrow 25.00 \\ 030 \rightarrow 30.00 \\ 037 \rightarrow 37.00 \\ 045 \rightarrow 45.00 \\ 055 \rightarrow 55.00 \\ 075 \rightarrow 75.00 \end{array}$	kW
F125	Rated drive current	[0,900]	4R4 → 18.4 5R5 → 25.5 7R5 → 31.1 011 → 36.8 015 → 42.4	A

Code	Definition and Instruction	Parameter Range	Default Value	Unit
		ŭ	018→53.8	
			025→70.7	
			030→90.5	
			037→113.1	
			045→140.0	
			055→173.9	
			075→220.6	
F126	Torque limit	[0,1800]	425	Nm
F127	Disturbance compensation gain	[0,200]	0	%
F128	Disturbance compensation filter frequency	[0,5000]	500	Hz
F129	Disturbance compensation lag cycle	[0,15]	5	Cycle (speed loop cycle)
F130	Overspeed protection time	[0,5000]	100	ms
F131	Flow reference rising slope	[0,32767]	16000	
F132	Flow reference declining slope	[0,32767]	16000	
F133	Brake resistor fault detection	0: Disable 1: Enable	1	
F134	PWM voltage compensation	0: Disable 1: Enable	0	
F135	Pump stuck detection	0: Disable 1: Enable	1	
F136	Oil circuit pressure discharge mode	0: Normal oil circuit 1: Valve pressure discharge oil circuit	0	
F137	Upper limit of reverse torque	[0,100]	100	%
F138	Speed integral torque boost	[0,1000]	0	%
F139	Speed multi-step PI enable	0: Disable 1: Enable	0	
F140	Pressure multi-step PI enable	0: Disable 1: Enable	0	
F141	Speed multi-step proportion 1	[0,32767]	7000	
F142	Speed multi-step integral 1	[0,32767]	140	
F143	Speed multi-step proportion 2	[0,32767]	7000	

Code	Definition and Instruction	Parameter Range	Default Value	Unit
F144	Speed multi-step integral 2	[0,32767]	140	
F145	Speed multi-step proportion 3	[0,32767]	7000	
F146	Speed multi-step integral 3	[0,32767]	140	
F147	Starting speed of valve pressure discharge	[-300,300]	0.9	rpm
F148	Starting pressure of valve pressure discharge	[0,250]	20	bar
F149	Closing pressure of valve pressure discharge	[0,250]	0.5	bar
F150	Cut-in speed of pressure-hold feedforward	[-6000,6000]	100	Rpm
F151	Cut-in pressure of pressure-hold feedforward	[0,250]	0.8	bar
F152	Pressure-hold gain	[0,32767]	0	
F153	Pressure full range voltage	[0,1100]	1000	0.01V
F154	Flow full range voltage	[0,1100]	1000	0.01V
F155	Resolver fault detection	0: Disable 1: Enable	1	
F156	PID terminal usage mode	0: Commonly used 1: Specific for casting machine	0	
F157	ALM_RST input selection	0: No function	1	
F158	S_ON input selection	1: Fault reset 2: Drive enable	2	
F159	I1 input selection	3: Shunt/converging	3	
F160	I2 input selection	selection 4: Storing signal input	4	
F161	13 input selection	5: Motor rotation	6	
F162	14 input selection	direction 6: PID terminal 1	7	
F163	Reserved	7: PID terminal 2	0	
F164	Reserved	8: PID terminal 3 9: PID terminal 4	0	
F165	Reserved	10: Trigger mode	0	
F166	Reserved	selection 11: Swash plate control enable(used when	0	

Code	Definition and Instruction	Parameter Range	Default Value	Unit
		swash plate is		
		controlled by		
		overpressure mode		
		during holding		
		pressure)		
		12: Swash plate		
		switching command		
		13: Pressure flow		
		control selection signal		
		14: Following unit		
		enable		
		15 – 63: Reserved		
F167	S_RDY output selection	0: No function	1	
F168	ALM output selection	1: Servo ready 2: Alarm output	2	
F169	Reserved	3: I2 terminal state	0	
F170	O1 output selection	4: Swash plate control output	4	
		5: Oil pressure reaches		
		output		
F171	O2 output selection	6: Valve pressure	5	
		discharge output		
		7 – 63: Reserved		

% See <u>5.3.2</u> and <u>5.3.5</u> for parameter instructions.

5.5.6 Commissioning Mode

When pressing we key to select "commissioning mode", LED panel will display "hxx", in which xx
is parameter identifier. Press () or () to select the parameter identifier to be set, after selection,
press set key, and LED panel will display corresponding parameter value. Wen modifying
parameter values, users can change the flickering bit by (), and modify the value of the flickering bit
via () or via key. After modification, press set key to save the modified value and stop the
flickering, then press er or key again to re-modify the parameter value, and the bit can be
modified will flicker. Press key to exit.

※ Under commissioning mode, if there is no button operation within 4m, the system will switch to speed and fault display interface automatically.

Code	Definition and Instruction	Parameter Range	Default Value	Unit
1100	H00 Operation enable	0: Disable	Related to the drive	
HUU		1: Enable	enable IO level	

Parameter table definition of setup mode is shown below:

Code	Definition and Instruction	Parameter Range	Default Value	Unit
		0: Disable		
H01	Diagnosis enable	1: Enable	0	
		0: No action		
	Diagnosis content (effective	1: Measure initial angle		
H02	only when diagnosis enable is	2: Jogging enable	0	
	turned on)	3 – 5: Invalid		
		6: Drive test		
	Jogging (effective only when	Erorward		
H03	diagnosis enable is turned on)	E Reverse		
		3: Speed mode		
H04	Control mode	4: Process mode	4	
	Speed reference (control mode			
H05	is: speed mode valid)	Related to motor model	0	rpm
		Digital input,		
		Analog input,		
	Process command mode	CAN continuous,		
H06		485 continuous,	1	
		CANopen input,		
		EtherCAT input,		
		Internal reference		
	Flow reference (process			
H07	command mode is	[0, max flow]	0	l/m
	communication input)			
	Pressure reference (process			
H08	command mode is	[0, max pressure]	0	kg
	communication input)			_
		The max motor speed when		
H09	Max jogging speed	and Vkeys are		rpm
		pressed, [0,100]		
H10	Resolver offset quantity	[0,4095]	0	
	Motor parameter autotuning	0: Disable		
H11	(effective only when diagnosis	1: Dynamic	0	
	enable is turned on)	2: Static		
	Advanced parameter operation	11111: Disable	00000	
H12	enable	99999: Enable	00000	
11/2		Other value: No action		
H13	Fault clear	0: No action 1: Clear	0	<i>c</i> (
H14	Internal flow reference 0	[0, 100.0]	0	%
H15	Internal flow reference 1	[0, 100.0]	0	%
H16	Internal flow reference 2	[0, 100.0] 91	0	%

Code	Definition and Instruction	Parameter Range	Default Value	Unit
H17	Internal flow reference 3	[0, 100.0]	0	%
H18	Internal flow reference 4	[0, 100.0]	0	%
H19	Internal flow reference 5	[0, 100.0]	0	%
H20	Internal flow reference 6	[0, 100.0]	0	%
H21	Internal flow reference 7	[0, 100.0]	0	%
H22	Internal pressure reference 0	[0, 100.0]	0	%
H23	Internal pressure reference 1	[0, 100.0]	0	%
H24	Internal pressure reference 2	[0, 100.0]	0	%
H25	Internal pressure reference 3	[0, 100.0]	0	%
H26	Internal pressure reference 4	[0, 100.0]	0	%
H27	Internal pressure reference 5	[0, 100.0]	0	%
H28	Internal pressure reference 6	[0, 100.0]	0	%
H29	Internal pressure reference 7	[0, 100.0]	0	%

※ See 5.3.3 for parameter instructions

5.5.7 Multi-pump Mode

When pressing we key to select "multi-pump mode", LED panel will display "pxx", in which xx is
parameter identifier. Press () or () to select the parameter identifier to be set, after selection,
press set key, and LED panel will display corresponding parameter value. Wen modifying
parameter values, users can change the flickering bit by (I), and modify the value of the flickering bit
via A or key. After modification, press set key to save the modified value and stop the
flickering, then press set or key again to re-modify the parameter value, and the bit can be
modified will flicker. Press key to exit.

Code	Definition and Instruction	Parameter Range	Default Value	Unit
P00	Network enable	0: Disable 1: Enable	0	
P01	Drive enable on the network	0: Disable 1: Enable	Related to drive enable IO level	
P02	Converging type	0: Single pump 1: Composite 2: Multi-pump 3: Multi-mode	0	
P03	Node number	[0,15]	0	
P04	Slave node number	[0,15]	0	
P05	Node type	0: Independent unit	0	

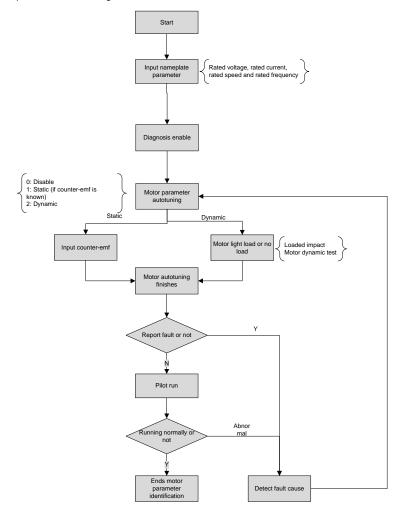
Code	Definition and Instruction	Parameter	Default	11
Code	Definition and instruction	Range	Value	Unit
		1: Control unit		
		2: Following unit		
		3: Flow loop unit		
P06	Flow cut-in threshold	[0,100.0]	25	%
P07	Upper limit of flow cut-in hysteresis	[0,100.0]	5	%
P08	Lower limit of flow cut-in hysteresis	[0,100.0]	2.5	%
P09	Multi-pump pressure proportional gain 0	[0,32767]	8000	
P10	Multi-pump pressure integral gain 0	[0,32767]	88	
P11	Multi-pump pressure differential gain 0	[0,32767]	0	
P12	Multi-pump pressure proportional gain 1	[0,32767]	8000	
P13	Multi-pump pressure integral gain 1	[0,32767]	88	
P14	Multi-pump pressure differential gain 1	[0,32767]	0	
P15	Multi-pump pressure proportional gain 2	[0,32767]	8000	
P16	Multi-pump pressure integral gain 2	[0,32767]	88	
P17	Multi-pump pressure differential gain 2	[0,32767]	0	
P18	Multi-pump pressure proportional gain 3	[0,32767]	8000	
P19	Multi-pump pressure integral gain 3	[0,32767]	88	
P20	Multi-pump pressure differential gain 3	[0,32767]	0	
		0: Free operation		
		1: Sync manager		
P21	ECAT synchronization mode	interruption	0	
		2: Sync clock		
		0: 500us		
Dee		1: 1ms		
P22	ECAT synchronization time	2: 2ms	1	
		3: 4ms		
P23	485 local communication address	[1,255]	10	
		0: (N,8,1)		N: No check
		1: (E,8,1)		bit;
P24	485 communication check mode	2: (O,8,1)	0	E: Even parity;
P24	485 communication check mode	3: (N,8,2)	0	O: Odd parity;
		4: (E,8,2)		8-bit data;
		5: (O,8,2)		1/2-bit stop bit;
		0: 9600bps		
		1: 19200bps		
P25	485 communication baud rate selection	2: 38400bps	1	
		3: 57600bps		
		4: 115200bps		

Code	Definition and Instruction	Parameter Range	Default Value	Unit
P26	CANOpen communication node number	[1,127]	32	
	CANOpen communication baud rate	0: 1000kbps		
		1: 500kbps		
D 07		2: 250kbps	4	
P27		3: 125kbps	1	
		4: 50kbps		
		5: 20kbps		

% See <u>5.3.4</u> for parameter instructions.

Chapter 6 Motor Parameter Autotuning

There are two kinds of motor parameter autotuning mode: static and dynamic.

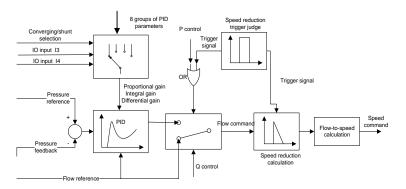

Static mode: the motor parameter value is calculated based on motor voltage equation by motor nameplate parameters, namely resistor, inductance and flux linkage. Therefore, the precision of motor parameter is based on the accuracy of nameplate parameters.

Dynamic mode: It is necessary to rotate the motor to a certain speed, the large load may impact the precision of the motor parameter test, therefore, no-load or light-load of motor is required during test.

F70	Rated motor voltage	[0,800]	V
F71	Rated motor current	[0,900]	А
F72	Rated motor speed	[0,6000]	rpm
F73	Rated motor frequency	[0,600]	HZ
F74	Motor counter-emf	[0.0,800.0]	V/Krpm
F 40		0: Disable	
E1Z	E12 Diagnosis enable		
		0: Disable	
E14	Motor parameter autotuning (effective only after	1: Static	
	diagnosis enable is started)	2: Dynamic	

Motor nameplate parameter and parameter autotuning mode:

Motor parameter autotuning test flowchart:



Chapter 7 Oil Pump Control

7.1 Oil Pump Control Mode Overview

Servo drive oil pump control mode is to change the AC servo motor speed based on the pressure inputted from external control system, flow command and feedback signal of pressure sensor, thus controlling the output pressure and flow of the oil pump. The pressure control forms a closed-loop PID control through the pressure sensor signal installed on the oil outlet port of the oil pump, while the flow control changes the flow discharged by the pump through controlling pump speed.

The basic schematic for oil pump is as below:

7.2 Common Pressure Priority Control (P Control)

The oil pump performs flow control when the feedback pressure fails to reach the reference pressure to make sure the output flow of the pump can change with the flow reference quickly and accurately. The output flow of the pump is in positive proportion to the motor speed, therefore the motor speed command is determined by the flow reference. When entering pressure control, it is required the pressure feedback of the system can change with the pressure reference quickly and accurately, while pressure feedback changes with the motor speed, thus the motor speed command is determined by pressure PID regulator.

In actual hydraulic pressure system, the oil pump control needs to switch between two kinds of control frequently, which requiring small pressure overshoot, quick switching speed and small vibration during switching. Users can optimize flow control, pressure control and switching control via adjusting speed proportional gain, speed integral gain, pressure proportional gain, pressure integral gain and pressure differential gain.

LED Display Code	Parameter Name	Function Instruction	Initial Value
F14	Speed proportional gain	Increase speed proportional gain can improve	When
		the transient response of motor speed control,	selecting
		improve motor speed stability and control the	different

Commissioning parameter table for pressure priority control:

LED Display Code	Parameter Name	Parameter Name Function Instruction	
		interference; however, if it is set to a too large value, vibration may occur.	pumps
F15	Speed integral gain	ral gain however, if it is set to a too large value, vibration may occur.	
F19, F22 F25, F28	Pressure proportional gain 0_3	Increase pressure proportional gain can improve the transient response and stability of	13000
P09, P12 P15, P18	Multi-pump pressure proportional gain 0-3	pressure control, control the interference and reduce pressure overshoot; however, if it is set to a too large value, vibration may occur.	8000
F20, F23 F26, F29	Pressure integral gain 0-3	Increase pressure integral gain can improve response speed of pressure control, reduce	100
P10, P13 P16, P19	Multi-pump pressure integral gain 0-3	pressure control deviation, however, it will also increase pressure overshoot. If it is set to a too large value, vibration may occur.	88
F21, F24 F27, F30	Pressure differential gain 0-3	The larger the differential value, the smaller the overshoot during switching to pressure	0
P11, P14 P17, P20	Multiple pressure differential gain 0-3	control; however, if it is set to a too large value, the voltage regulation deviation characteristic will be deteriorated and vibration may occur.	0

7.3 Flow Priority Control (Q Control)

In cases where pressure reference is low, the rising speed of flow command will be impacted by pressure reference, in the meantime, during flow control; the pressure feedback will also make an impact on the flow command when it rises quickly to a value close to the reference pressure. Flow priority control can be applied in cases where it is required that the flow command should not be impacted by the pressure reference and pressure feedback during flow control. During flow control, flow reference acts as the flow command of the system, the condition for flow control to be switched to pressure control can be changed via parameters, during switching, users can reduce pressure overshoot via pressure trigger control.

* The default setting of the drive is pressure priority control, while the flow priority control can be commissioned only by the SCM of the PC of our company.

Parameter Name	Function Instruction	Initial Value	Unit
Control mode	P mode is pressure control priority mode, Q mode is flow control priority mode	P control	
Trigger	When switching from flow control to pressure control, the	200	rpm
	22		

Commissioning parameter table of flow priority control:

Parameter Name	Function Instruction	Initial Value	Unit
integral value	pressure trigger controls the set motor speed.		
Trigger mode	Set whether to use pressure trigger control function when switching from flow control to pressure control.	No trigger	
Pressure differential trigger threshold	The pressure rising speed condition for entering pressure trigger state	10	bar\ms
Enter trigger coefficient 1	The upper limit of the ratio between feedback pressure and reference pressure when entering pressure trigger state	90	%
Enter trigger coefficient 2	The lower limit of the gap between reference pressure and feedback pressure when entering pressure trigger state	10	bar
Exit trigger coefficient 1	The lower limit of the ratio between feedback pressure and reference pressure when exiting pressure trigger state	80	%
Exit trigger coefficient 2	The upper limit of the gap between the reference pressure and feedback pressure when exiting pressure trigger state	15	bar

7.4 Dual-Displacement Pump Control

Dual-displacement plunger pump can switch between big/small swash plates by switching on/off the coil, thus changing the displacement of the pump. Big swash plate dig angle is used in large flow output demand while small swash plate dip angle is used in small pressure output or pressure-hold, thus improving pressure control performance and reducing energy consumption. There are two control modes for the dual-displacement pump swash plate switching: over-pressure switching, hold pressure/over-pressure switching.

Over-pressure switching mode: When the system feedback pressure is larger than the displacement switching pressure threshold and the motor speed is smaller than the lower limit of switching speed, switch to small swash plate dig angle; when the motor speed is larger than the displacement switching speed, switch to big swash plate dip angle.

Over-pressure switching mode during holding pressure: Connect the injection input signal of upper control system to the digital input signal I6 (CN3-12) of the drive, if the input is high, it means the injection molding machine is working in injection pressure-hold state, and if in the meantime, the feedback pressure reaches pressure reference value or exceeds displacement switching pressure threshold and the motor speed is less than the lower limit of the displacement switching speed, switch to small swash plate dig angle; if the motor speed exceeds the upper limit of displacement switching speed or digital input signal I6 input is low, switch to big swash plate dip angle.

When switching to small swash plate dip angle, the drive will compensate the motor speed command according to the displacement ratio to keep the oil output flow constant.

Commissioning parameter table for dual-displacement pump control:

LED Display Parameter Function Instruction Initial Value Unit

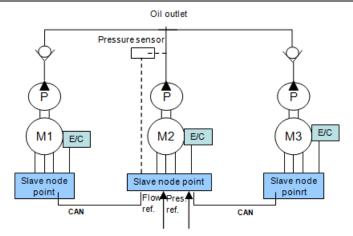
Code	Name			
F45	Plunger pump model selection	Plunger pump model selection	0: Single displacement	0: Single displacement 1: Dual displacement
F46	Plunger pump displacement ratio	Displacement ratio between small swash plate dig angle and big swash plate dip angle	30	%
F47	Wobble plate pressure switching threshold	The feedback pressure threshold when the system switches to small swash plate dip angle	195	bar
F48	Wobble plate pressure judging delay	The continuous time condition for the feedback pressure to be larger than wobble plate pressure switching threshold when switching to small swash plate dip angle.	100	ms
F56	Wobble plate switching rising delay	Speed compensation delay when big swash plate dip angle switches to small swash plate dip angle	10	ms
F57	Wobble plate switching declining delay	Speed compensation delay when big swash plate dip angle switches to big swash plate dip angle	10	ms
F58	Upper limit of speed switching	Motor speed threshold when switching to big swash plate dip angle	1200	rpm
F59	Lower limit of speed switching	Motor speed threshold when switching to small swash plate dip angle	200	rpm
F65	Displacement switching mode	0: Over-pressure 1: Over-pressure during pressure-hold	0: Over-pressure	

Chapter 8 Multi-pump Parallel Control

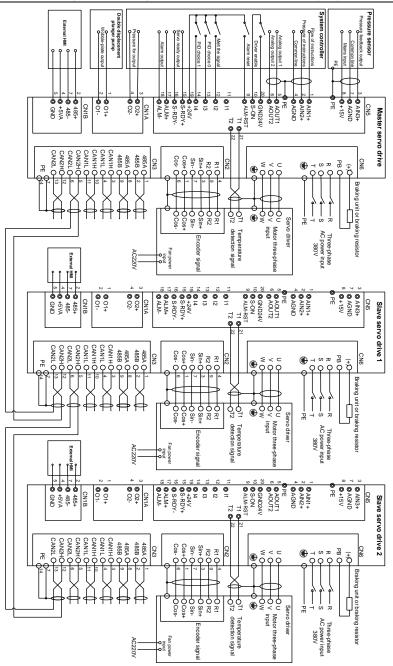
The hydraulic-pressure control of the injection molding machine with large tonnage is limited by the oil pump displacement or motor power, therefore, the single pump system is far from satisfying the flow demands, it is a must to connect in parallel the oil outlets of multiple single pump systems to realize converging and obtain large flow. In converging system, in order to improve productivity and shorten the process cycle, it is necessary to complete two or more actions at the same time, which requires the hydraulic pressure system carrying single circuit to be divided into dual-circuit or three-circuit hydraulic system that can be controlled separately, and each circuit can perform flow and pressure control independently during shunt control, while during converging control, pressure control and system total flow control is performed by only one main drive, and other drives converts to the flow command of each circuit via flow distribution calculation based on the system total flow command of the main drive. The system total output flow is the flow sum of the oil pump output of each circuit system.

8.1 Multi-pump Mode

When the converging type of each node (single pump system) is set to multi-pump, each node can work in converging control only. The main node is used to receive the pressure and flow reference and running enable signal of the upper control system as well as the pressure sensor signal of the system oil outlet port, then carry out pressure and system total flow control. The slave node converts to speed command to perform speed control based on the system total flow command sent by CAN communication according to below flow distribution algorithm.

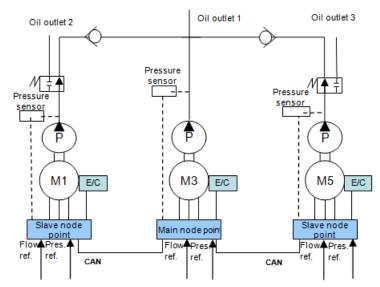

The flow distribution mode when converging type is multi-pump or composite:

Each node has its own max private flow, namely the max flow that can be withstood by the node alone.


Max private flow=max node flow*flow cut-in threshold ratio

For total flow command of reference system, if it is less than the max private flow of main pump 0, the main pump 0 bears all the system flow needs; if it is larger than that of the main pump 0, main pump 0 provides its max private flow while the residual flow is provided by the slave pump; when the residual flow needs is less than the max private flow of slave pump 1, the slave pump 1 bears all the residual flow; when it is larger than that of the slave pump 1, slave pump 1 provides its max private flow, and the residual flow needs will be provided by the slave pump, continue by that analogy until the residual energy is fully consumed by the remaining slave pumps. If the max private flow of the last slave pump is less than the residual flow, namely the max private flow sum of all the pumps cannot fully consume the system flow needs, the system flow needs will be distributed evenly (based on the ratio) to all the pumps.

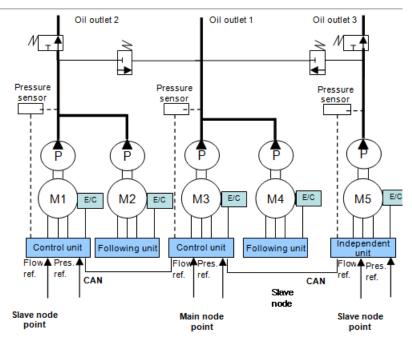
1) System diagram of multi-pump mode:


2) Multi-pump wiring diagram:

8.2 Composite Mode

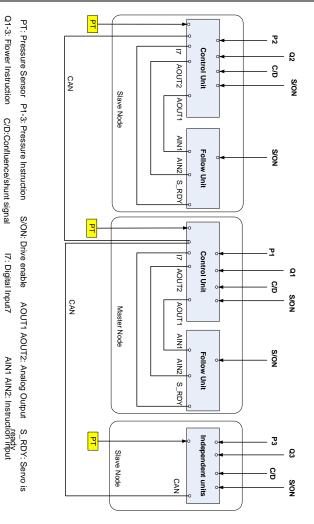
The system has two kinds of control modes, namely converging and shunt. The control mode of each node can be switched by digital input I1 (C/D). In shunt mode, each node acts as the single-circuit hydraulic pressure system to complete flow and pressure control, while for converging mode, which is the same as multi-pump mode, the main node completes pressure control and system total flow control, and the slave node converts to speed command based on the system total flow command sent by CAN communication according to above flow distribution algorithm.

1) System diagram for composite mode


8.3 Multi-mode

The system is comprised of three nodes and each node is comprised of one or more single pump systems. The single pump system is called control unit and the node constituted by one control unit is an independent unit node. The multi-unit node comprised of multiple control units can be taken as a node constituted by double-pump or multiplex pump, while multi-unit mode is comprised of one control unit and one or more following units, the node carries a pressure sensor to connect to the control unit and the control unit connects to the upper control system via AIN1 and AIN2, thus receiving the pressure and flow reference signal. The two DA outputs of control unit is connected to the AIN1 and AIN2 of the following unit respectively to act as the motor speed reference signal and drive enable signal. The RDY output ports of the following unit are connected in serial with positive end connecting to 24V power and negative end connecting to 17 of control unit. The control unit obtains the running state of the following unit drive via this digital input port.

Each node uses I1 (C/D) to switch the control mode. When I1 is high, the node works in converging state and if it is low, the node works in shunt state. When the system operates in converging state, the

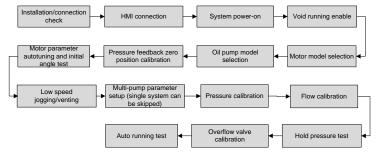

node number of converging can be changed, and the main node completes pressure control and system total flow. The slave node working in converging mode operates in the same speed with the main node. Above flow distribution algorithm is not used during multi-mode. The control unit of each node performs pressure control and flow control respectively in shunt mode, and the following unit and control unit keeps operating in the same speed.

System diagram for multi-mode:

Wiring diagram for composite mode and multi-mode:

Commissioning parameter table for multi-pump parallel control:

LED Display Code	Parameter Name	Function Instruction	Initial Value	Unit
P00	Network enable	Network enable control: Set properly the parameters to be used by the single pump of each node and the converging type and node number. The main node needs to be set with proper slave node number, flow cut-in threshold and	0: Disable	


LED Display Code	Parameter Name	Function Instruction	Initial Value	Unit
		upper/lower limit of flow cut-in hysteresis.		
		After all the settings are done, executing		
		the network enable commands in		
		sequence (slave node first, main node		
		last).		
		0: Disable; 1: Enable		
	Drive enable on the	Control the disable/enable of the drive of		
P01	network	all nodes, suitable for multi-pump mode	0: Disable	
	network	0: Disable; 1: Enable		
		Select converging type		
Doo	O	0: Single pump; 1: Composite; 2:	0: Single	
P02	Converging type	Multi-pump;	pump	
		3: Multi-mode		
Doo	No do avando ou	If node number is 0, it means master	0	
P03	Node number	If node number is 1 – 15, it means slave	0	
		If node number is 0, the slave number		
P04	Slave node number	means the number connected to this	0	
		master		
		Set the mode for the drive to work in the	0:	
P05	Node type	node	o. Independent	
F 03	Node type	0: Independent unit; 1: Control unit 2:	unit	
		Following unit; 3: Flow loop unit	unin	
		The condition for the next pump to		
P06	Flow cut-in	engage: serves to make the next pump to	25	%
FUO	threshold	engage when the system flow exceeds	25	70
		the flow cut-in threshold of present pump,		
		The condition for the next pump to		
D07	Upper limit of flow	engage: serves to prevent repeated	F	%
P07	cut-in hysteresis	start/stop of the pump which is caused by	5	%
		the flow's staying in the threshold point.		
		The condition for the next pump to		
Doo	Lower limit of flow	engage: serves to prevent repeated	0.5	%
P08	cut-in hysteresis	start/stop of the pump which is caused by	2.5	%
		the flow's staying in the threshold point.		
	Multi-pump	O th atop of the propertice of parameters of		
P09	pressure	0 th step of the proportional parameter of	8000	
	proportional gain 0	multi-pump pressure PID control		
D40	Multi-pump	0 th step of the integral parameter of	00	
P10	pressure integral	multi-pump pressure PID control	88	

LED Display Code	Parameter Name	Function Instruction	Initial Value	Unit
	gain 0			
P11	Multi-pump pressure differential gain 0	0 th step of the differential parameter of multi-pump pressure PID control	0	
P12	Multi-pump pressure proportional gain 1	1 st step of the proportional parameter of multi-pump pressure PID control	8000	
P13	Multi-pump pressure integral gain 1	1 st step of the integral parameter of multi-pump pressure PID control	88	
P14	Multi-pump pressure differential gain 1	1 st step of the differential parameter of multi-pump pressure PID control	0	
P15	Multi-pump pressure proportional gain 2	2 nd step of the proportional parameter of multi-pump pressure PID control	8000	
P16	Multi-pump pressure integral gain 2	2 nd step of the integral parameter of multi-pump pressure PID control	88	
P17	Multi-pump pressure differential gain 2	2 nd step of the differential parameter of multi-pump pressure PID control	0	
P18	Multi-pump pressure proportional gain 3	3 rd step of the proportional parameter of multi-pump pressure PID control	8000	
P19	Multi-pump pressure integral gain 3	3 rd step of the integral parameter of multi-pump pressure PID control	88	
P20	Multi-pump pressure differential gain 3	3 rd step of the differential parameter of multi-pump pressure PID control	0	

Chapter 9 Running Commissioning

MH800 series hydraulic pressure servo system supports two kinds of commissioning modes to satisfy different customer demands: commissioning via the external HMI (optional) which adopts 5.7 inch LCD and user-friendly interface or commissioning by the built-in LED panel of the servo drive.

9.1 Commissioning Flowchart

9.2 Commissioning Procedures

The following commissioning instruction describes the operation procedures of HMI commissioning system. For commissioning via LED panel, refer to <u>5.4</u> for details.

9.2.1 Commissioning Preparations

1) Installation confirmation

Check the connections of each terminal, confirming all the parts needing to be fixed are fixed firmly and no loose thread occur.

2) HMI connection

MH800 series servo electro-hydraulic system supports hot-plugging of HMI. Just insert the DSUB9 terminal of HMI into the CN1B terminal on the front cover of the drive to connect the HMI to the drive. (This procedure is skipped if commissioning via LED panel).

3) Void enable

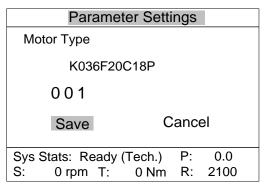
In order to ensure system safety during commissioning, it is required to void the enable of the system before powering on 3-phase AC and commissioning. There are two ways to void enable when HMI is not connected:

Method 1: Disconnect the connection wire of the drive enable terminal;

Method 2: If the upper PC of the injection molding machine carries system enable function and the enable output is connected to the enable terminal of the drive, users just need to void the system enable.

9.2.2 Motor Model Selection

1) Motor model selection mode


Refer to motor model list in 5.5.5 : use 🔄 and 🕨 key to switch to "set" mode, and stop the

highlighted cursor at "motor selection" item via () and () key, then press 确认 key to access. Monito Setting Tuning CT-7501-A-0 Drive Type Motor Type U1004F.15.3 Pump Type SETTIMA 28mL/r P. Sensor Zero P. Cal. Mode Linear Q. Cal. Mode Linear Sys Stats: Ready (Tech.) P: 0.0 R: 2100 S: 0 т· 0

Use \checkmark and \blacktriangleright key to stop the highlighted cursor at the motor model number item, and change the value to the corresponding number of the motor via \checkmark and \checkmark key. (See motor nameplate for

detailed model, the figure above takes "K036N20A11" as an example)

Then, stop the highlighted cursor sat the "save" item via \checkmark and \blacktriangleright key, and press key to save and exit to the setup menu column, HMI will transmit present motor parameter to the drive. The right side of motor selection menu will display "parameter programming", and displays motor model "K036N20A11" after parameter programming is finished.

LED panel commissioning setup parameter:

9.2.3 Pump Model Selection

1) Pump model selection mode

Refer to Oil pump model list in <u>5.5.5</u>, stop the highlighted cursor at the "pump selection" item via \checkmark and \bigtriangledown , and press (4,1) to enter.

Monito	Setting	1	[uning]	
Drive Type		CT-75	01-A-0	
Motor Type		U1004	F.15.3	
Pump Type		SETTIMA	28mL/r	
P. Sensor Ze	ero			
P. Cal. Mode	•		Linear	
Q. Cal. Mode			Linear	
Sys Stats: Re	ady (Tecl	h.) P:	0.0	
S: 0	T: 0	R:	2100	

First, use \checkmark and \blacktriangleright key to stop the highlighted cursor at the corresponding number, then change this number to the corresponding value of pump model via \checkmark and \checkmark key. (See the pump nameplate for detailed model, the figure above takes "PUMP 28mL/r" as an example)

Then, stop the highlighted cursor at "save" via and b, and press key to exit to the setup menu column, the HMI will transmit present pump parameters to the drive.

The right side of the "pump selection" menu will display "parameter programming", then display pump model "PUMP 28mL/r" after parameter programming is done.

Paramet	er Settings
Pump Type	
PUMP 28	3mL/r
0 1	
Save	Cancel
Sys Stats: Ready (Tech.) P: 0.0
S: 0 rpm T:	0 Nm R: 2100

LED panel commissioning setup parameter:

If the selected pump is not in the model list, it is necessary to reset. In setup menu, adjust pump displacement (reset) [F31] and pump leakage (reset) [F32].

The following setup $9.2.3(2) \rightarrow 9.2.3(12)$ can be skipped when system configuration is the same with the default value.

- 2) Backpressure mode selection [F43] (the default value is manual backpressure)
- a) Automatic: Storing mode is electronic backpressure
- b) Manual: Storing mode is manual backpressure

3) Pressure sensor model selection [F44] (default value is 10V)

a) 5V: The drive sampling voltage range is 0 – 5V, sensor output range is 1 – 5V, measuring range is 0 – 200bar;

b) 10V: The drive sampling voltage range is 0 – 10V, sensor output range is 0 – 10V, measuring range is 0 – 250bar.

4) Plunger pump type selection [F45] (default setting is single-displacement plunger pump)

a) Dual-displacement: dual-displacement plunger pump

b) Single-displacement: single-displacement plunger pump

5) Plunger pump displacement ratio [F46] (single-displacement plunger pump is skipped)

Parameter value is the ratio between small displacement and large displacement.

6) Wobble plate switching mode [F65] (single-displacement plunger pump is skipped)

Set displacement switching mode.

7) Wobble plate switching pressure threshold [F47] (single-displacement plunger pump is skipped) Set displacement switching pressure threshold

8) Wobble plate pressure judging delay [F48] (single-displacement plunger pump is skipped)

Set wobble plate switching pressure delay

9) Wobble plate switching rising delay [F56] (single-displacement plunger pump is skipped)

Set displacement switching rising delay

10) Wobble plate switching declining delay [F57] (single-displacement plunger pump is skipped)

Set displacement switching declining delay

11) Upper limit of speed switching [F59] (single-displacement plunger pump is skipped)

Set upper limit of speed switching

12) Lower limit of speed switching [F59] (single-displacement plunger pump is skipped)

Set lower limit of speed switching

13) Multi-step pressure PID setting

If the system need to use different pressure PID parameters to perform stepwise control in different steps, first, connect I3 (CN3-9)and I4(CN3-10)and take them as the indication signals for control step, then set the PID parameter of the corresponding step (four steps in total). The relation between digital input signal and each step of pressure PID is shown below:

Pressu	Pressure Control PID Selection during Single Pump Mode: Pressure PID Parameter					
14	13	KP number	KI number	KD number		
low	low	0	0	0		
low	high	1	1	1		
high	low	2	2	2		
high	high	3	3	3		

9.2.4 Pressure Feedback Zero Position Calibration Mode

Under setup mode, stop the highlighted cursor at "pressure feedback zero position calibration" item via \checkmark and \bigtriangledown key, then press key to enter the setup interface of this item.

Monito	Setting	Tuning 🕨
Drive Type		CT-7501-A-0
Motor Type		U1004F.15.3
Pump Type	S	ETTIMA 28mL/r
P. Sensor Ze	ero	
P. Cal. Mode	ł	Linear
Q. Cal. Mode		Linear
Sys Stats: Re	ady (Tech	.) P: 0.0
S: 0	T: 0	R: 2100

Adjust the pressure in the system oil circuit to "0" (subject to the pressure gauge of the injection molding machine) before carrying out pressure feedback zero position calibration.

Stop the highlighted cursor at "save" via 🔄 and 🕨 key, then press 🛤 key to return to the setup menu column, and the "pressure feedback zero position calibration" item will display "calibrating", when "calibrating " disappears, it means calibration is done.

Parameter Se	ttings				
The zero calibration pressure feedback					
Save	Cancel				
Sys Stats: Ready (Tech.) S: 0 rpm T: 0 Nn					

LED panel commissioning setup parameter:

E			B	3
---	--	--	---	---

9.2.5 Motor Parameter Autotuning and Motor Initial Angle Measurement

If the motor used is not listed in 5.5.4 motor model list, motor parameter autotuning will be required. The autotuning procedures are shown below:

1) Set motor parameters:

Use HMI or LED commissioning panel to set in setup menu the rated motor voltage [F70], rated motor current [F71], rated motor speed [F72], rated motor frequency [F73], motor counter-emf [F74] and motor temperature sensor [F75].

2) Diagnosis function "Enable"

Use \checkmark and \blacktriangleright key to switch to "commissioning mode", and stop the highlighted cursor at "diagnosis function" item via \checkmark and \bigtriangledown key, then press $\stackrel{\text{(iii)}}{\longrightarrow}$ key to change the "diagnosis function" state to "enable".

Monitor	Setting	٦	Funing	
Operating Ena				
Diagnosis Ena	able		Enable	
Controller Che	eck	Disable		
Measure Angl	le	Disable		
Jog Enabled Disable			Disable	
Motor S.L. Way			Disable	
Sys Stats: Ready (Tech.)			0.0Bar	
S: 0 rpm	T: 0 Nm	R:	2100	

LED panel commissioning setup parameter:

566	88
-----	----

3) Motor parameter autotuning

Set motor parameter autotuning [E14] parameter.

0: Disable, do not carry out motor parameter autotuning;

1: Static, carry out in cases where motor counter-emf is known, and the motor does not rotate during measuring; can be performed without turning on the overflow valve;

2: Dynamic, adopted in cases where motor counter-emf is unknown, and the motor runs at high speed during measuring, it is recommended to turn on the overflow valve as measuring with load may impact the precision of motor parameter measuring and the control effect, meanwhile, it may cause high voltage in the oil circuit which is a safety danger.

If LED commissioning is used, after setup, the LED will display "------", after measurement completes, the motor parameter autotuning [E14] parameter on the LED will revert to 0 automatically. If HMI commissioning is used, after setup is done, the right side of "motor parameter autotuning" will display "auto-measuring"; after measurement, the right side of "motor parameter autotuning" displays "succeed", then it will be switched to "disable" state automatically.

If the drive alarms during test, users should analysis the fault cause and rule out the problem to proceed with motor parameter autotuning.

LED panel commissioning setup parameter:

4) Motor initial angle test

When motor brands other than KINWAY is adopted, it is necessary to measure the motor initial angle again.

If motor parameter autotuning is completed, motor initial angle test is not needed.

After entering commissioning interface, stop the highlighted cursor at "measuring initial angle" item via () and () key. and press () key to make it in "enable" state.

Monitor	Setting	٦	Funing		
Operating Ena	able				
Diagnosis Ena	able		Enable		
Controller Che	eck		Disable		
Measure Angl	le	Disable			
Jog Enabled			Disable		
Motor S.L. Way			Disable		
Sys Stats: Ready (Tech.)			0.0Bar		
S: 0 rpm	T: 0 Nm	R:	2100		

After setup, the system will measure the initial angle automatically; the right side of the "measuring initial angle" displays "auto-measuring".

Monitor	Setting	Tuning		
Operating En	able			
Diagnosis En	able	Enable		
Controller Ch	eck	Disable		
Measure Ang	Measure Angle Self-test			
Jog Enabled		Disable		
Motor S.L. V	Disable			
Sys Stats: Ready (Tech.)) P: 0.0Ba	r	
S: 0 rpm	T: 0 Nr	m R: 2100		

After measurement is done, the right side of "measuring initial angle" displays "succeed" and the measurement result will be displayed in "resolver offset quantity", then it will be switched to "disable" state.

LED panel commissioning setup parameter:

After entering "measure initial angle" menu, LED will display "READY", press SET key to measure the initial angle automatically, LED displays " — — — " . After measuring is done, LED displays "OK".

The operator should save the measurement value into EEPROM via the parameter programming function in the setup menu, and save the latest calibration state into EEPROM via "parameter programming" function in the setup menu, otherwise, the calibration state will revert to the state

before calibration.

The programming procedures are shown below:

item via and view, then press key to enter "parameter programming" setup interface".

Multi	Saving	E	xpress
Save			
Reset			
Read Batch			
Save Batch			Empty
Delete Batch		Empty	
Fault Check			
Sys Stats: Re	eady (Tech.) P:	0.0Bar
S: 0 rpm	T: 0 N	m R:	2100

Paramete	er Settings
SAVE PREF	ERENCES
Save	Cancel
Sys Stats: Ready (T	,
S: 0 rpm T:	0 Nm R: 2100

Stop the highlighted cursor at the "confirm" via and key, then press key, then press (highlighted cursor at the "parameter programming" interface, and the right side of the parameter programming item will display "in programming". When "in programming" disappears, it means programming is completed.

LED panel commissioning setup parameter:

9.2.6 Low Speed Jogging and Venting

The test aims to check whether basic functions of the electro-hydraulic system operation are normal.

1) Inspection and preparation before operation

During running the servo system for the first time, it is a must to check the circuit connection of hydraulic pressure and electrical connection of servo system beforehand; oil pump displacement and operation pressure valve should be the same with those on the nameplate. First, adjust the system to the state where the oil discharged by the pump returns to the oil chamber directly; for instance, adjust the overflow pressure of the overflow valve to the min

value. Note: Do not start the machine when shut-off is applied to the output side of the oil pump.

- 2) Low speed light-load operation
- a) Turn on jogging enable to adjust the max jogging speed. After entering commissioning interface, stop the highlighted cursor at "jogging enable" item via and view, and press (()) key, and press (()) key to make it in "enable" state.

Monitor	Setting	T	uning
Operating Ena			
Diagnosis Ena	ble		Enable
Controller Che	ck		
Measure Angle	Э		
Jog Enabled	Enable		
Motor S.L. Way			echnical
Sys Stats: Rea	ady (Tech.)	P:	0.0Bar
S: 0 rpm	T: 0 Nm	R:	2100

After adjustment is done, the operator can make the motor rotate forward or backward via and 能要, and keeping 前进 and 定题 pressed down can accelerate the motor to the max jogging speed in positive or negative direction (use and we for LED panel commissioning).

LED panel commissioning setup parameter:

86		В	3
----	--	---	---

Confirm the working condition

When motor rotates forward, confirm that the rotation direction of the pump is the same with the arrow direction on the pump label; confirm the noise and vibration is within normal range and the pump can suck oil normally.

Error	Phenomenon	Phenomenon Solution	
Error 1	The motor does not rotate and the	Enter setup menu to change motor rotation	
Error 1 torque value is large. direction. Perform step 8.2.5 – 8.2.6(2)(b):		direction. Perform step 8.2.5 – 8.2.6(2)(b)again	
	The rotation direction of the pump	Enter setup menu to change motor rotation	
Error 2	differs from the arrow direction on	direction and resolver direction. Perform step	
	the pump label.	8.2.5 – 8.2.6(2)(b)again	

b) Venting

Confirm above-mentioned 9.2.6(2)(b)is normal and make the pump rotate forward to vent all the air inside the hydraulic pressure system.

Note: At the beginning of startup, abnormal noise may occur as there is air mixed in the hydraulic pressure oil, which is normal phenomenon; however, if the abnormal noise persists in a period of time, users must vent the air in the hydraulic pressure oil circuit.

c) Void jogging enable and diagnosis enable

Refer to the modification mode in 9.2.6(2)(a)to disable the "jogging enable", then refer to the modification mode in 9.2.5(2) to change the state of "diagnosis function" to "disable".

Monitor	Setting	g 1	Funing
Operating Enable			Disable
Diagnosis En	able		Disable
Controller Ch	eck		
Measure Angle			
Jog Enabled			Enable
Motor S.L. V	Vay	Τe	echnical
Sys Stats: Re	eady (Tec	h.) P:	0.0Bar
S: 0 rpm	T: 0	Nm R:	2100

LED panel commissioning setup parameter:

Press MODE key to make LED exit from jogging state. The exit diagnosis state needs to set the parameter below.

Multi-pump parameter setup (if the system is single-pump system, this procedure can be skipped)

1) Converging type setup

Use \checkmark and \blacktriangleright key to switch to "multi-pump", then stop the highlighted cursor at "converging type" item via \checkmark and \checkmark key, then press \clubsuit key to enter setup menu.

 Multi 	Saving	g E	xpress
NET Control		Dis	able
NET IPM Co	ntrol	Dis	able
Merged Flow	Туре	Si	ngle
Node ID	0		0
Slave Sum	0		0
Node Type Single Unit			le Unit
Sys Stats: Re	ady (Teo	:h.) P:	0.0Bar
S: 0 rpm	T: 0	Nm R:	2100

Use and key to stop the highlighted cursor at type selection, then change the converging type to the type needed via and key (in above figure, "multi-pump" is taken as an example).

Paramet	er Settings
Merged Flow Ty	pe
Multiple	
Save	Cancel
Sys Stats: Ready (S: 0 rpm T:	Tech.) P: 0.0 0 Nm R: 2100

Then, stop the highlighted cursor at "save" via and key, press key, press key to save and exit to multi-pump menu column, then the right side of converging type menu will display the selected type (in above figure, "multi-pump" is taken as an example).

LED panel commissioning setup parameter:

E			B	B
---	--	--	---	---

2) Node number setup

Use \checkmark and \blacktriangleright key to switch to "multi-pump", then stop the highlighted cursor at "node number" item via \checkmark and \checkmark key, and press $\textcircled{\text{and}}$ to enter the setup menu.

Multi	Sav	/ing	Express		
NET Control		Disable			
NET IPM Co	ntrol		Disa	able	
Merged Flow	Туре	e	Mul	tiple	
Node ID	0		C		
Slave Sum	Blave Sum		ן כ		
Node Type	de Type Single Uni			e Unit	
Sys Stats: Re	ady (Tech.)	P:	0.0Bar	
S: 0 rpm	T:	0 Nm	R:	2100	

Use and b key to stop the highlighted cursor at type selection, then set the node number via

▲ and ▼ key: set the main system node number to 0, set the slave system communication node number to "1", "2"..... in order based on the quantity of slave systems (the main system "0" is taken as an example in the figure).

Parameter Sett	ings	
Node ID		
00		
00		
Save C	ance	el
Sys Stats: Ready (Tech.)		0.0
S: 0 rpm T: 0 Nm	R:	2100

Then, stop the highlighted cursor at "save" via \checkmark and \blacktriangleright key, press B to save and exit to multi-pump menu column. The right side of the node number menu will display the node number of present system ("0" is taken as an example in the figure).

LED panel commissioning setup parameter:

				. —.
11 1	11		11	
li=i	i=i	i=i	i-i	i – i I
<u> </u>	<u> </u>	<u> </u>		•

3) Slave node number setup (no. 0 node needs to be set, other nodes are skipped)

Use and key to switch to "multi-pump", then stop the highlighted cursor at "slave node number" via and vey, and press to enter setup menu.

Multi	Saving	E	xpress	
NET Control		Disable		
NET IPM Co	ntrol	Disable		
Merged Flow	Туре	Mul	tiple	
Node ID		0		
Slave Sum		0		
Node Type Single Unit			e Unit	
Sys Stats: Re	ady (Tech.)	P:	0.0Bar	
S: 0 rpm	T: 0 Nm	R:	2100	

Use \checkmark and \blacktriangleright key to stop the highlighted cursor at type selection, then set slave node number and the quantity of slave systems via \checkmark and \bigtriangledown key (a slave system "1" is taken as an example in the figure)

r Settings
Canaal
Cancel
ech.) P: 0.0
0 Nm R: 2100

Use \checkmark and \blacktriangleright key to stop the highlighted cursor at "save", press $\overset{(h)}{\longrightarrow}$ to save and exit to enter multi-pump menu column. The right side of slave node number menu will display the slave node number of present system ("1" is taken as an example in the figure).

LED panel commissioning setup parameter:

E				B
---	--	--	--	---

4) Multi-pump flow setup

Set "flow cut-in threshold" [P06], normally set to 25%;

Set "upper limit of flow cut-in hysteresis" [P07], normally set to 5%;

Set "lower limit of flow cut-in hysteresis" [P08], normally set to 2.5%

5) Network enable and drive enable setup

Network enable: Set "network enable/disable" [P00] respectively to perform network enable on the drive in the order of slave first and master last.

Drive enable on the network: This function is effective only when converging type is set to multi-pump mode, set "Drive enable" [P01] and perform motor enable operation on all the drives on the multi-pump parallel system.

6) Node type setup

When a certain node on the multi-pump parallel system is a multi-unit node comprised of multiple drives, it is necessary to set the "node type" [P05] parameter of all the drives on this node.

9.2.7 Pressure Calibration

Note: The calibration for "single pump", "composite", "multi-mode" or "multi-pump" differs from each other slightly.

- Single pump: Calibrate directly regardless of "network enable" [P00] parameter;
- Composite and multi-mode:

First, disable the "network enable" [P00] under "multi-pump" menu, then calibrate each node according to the calibration mode of single pump system.

Multi-pump:

First, disable the "network enable" [P00] under "multi-pump" menu, and set the proper "max flow" [F13]and "max pressure" [F12] of each node, then perform network enable on the multi-pump parallel system according to the mode specified in 9.2.7(5), at this moment, the max system pressure takes the min value of the "max pressure" of the master and slave nodes, then carries out calibration according to below method.

Change the "operation enable" item to "disable" state, (in multi-pump type, change "drive enable" item [P01]) to "disable" state)

Monitor	Setting	Т	uning		
Operating En	able		Disable		
Diagnosis En	able		Disable		
Controller Ch	eck				
Measure Angle					
Jog Enabled					
Motor S.L. V	Vay	Τe	chnical		
Sys Stats: R	eady (Tech.)	P:	0.0Bar		
S: 0 rpm	T: 0 Nm	R:	2100		

LED panel commissioning setup parameter:

88		B	
----	--	---	--

1) Filter adjustment

Use and key to switch to setup mode, and stop the highlighted cursor at "pressure filter" item via and view, then press key to enter the setup interface of pressure filter.

Parameter S	ettings
Pressure filter	
Analog input pressure	81.0
0 1	
Save	Cancel
Sys Stats: Ready (Tech S: 0 rpm T: 0 N	i.) P: 0.0 Im R: 2100

LED panel commissioning setup parameter:

60		36	
----	--	----	--

Adjust the upper PC pressure reference to 40%, observe the change of pressure analog input.

Improve the pressure filter parameter value gradually by setting parameters until the fluctuation of pressure analog input reaches the standard listed in below table.

Fluctuation of pressure analog input	≤0.2V	Measurement should be carried out during 40% of pressure reference
--------------------------------------	-------	--

2) Calibration

Purpose: The servo system can convert the analog reference of control system to actual requirements to carry out control only when the control system offers a reference point to the analog quantity of servo drive.

a) Set max pressure and pressure full range

The purpose of setting the max pressure is to avoid the reference of upper PC exceeds the upper limit of the system. For multi-pump type, this parameter has been set already and need not to be set again.

Under set mode, stop the highlighted cursor at "max pressure" item via () and () key and press

Modify the parameter value of the max pressure via setting value parameters. (165kg is taken as an example in the figure)

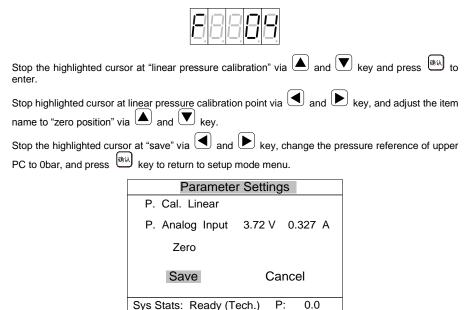
Paramete	r Settings
P. Max.	
165 E	Bar
Save	Cancel
Sys Stats: Ready (T S: 0 rpm T:	ech.) P: 0.0 0 Nm R: 2100

Similarly, set the "pressure full range" to the required value (set 160kg as an example in the figure)

Parameter Settings			
P. Full Scale			
160 Bar			
100 Bai			
Save Cancel			
Save Cancer			
Sys Stats: Ready (Tech.) P: 0.0			
S: 0 rpm T: 0 Nm R: 2100			

LED panel commissioning setup parameter: Pressure full range and the max pressure can be

modified in LED panel by setting the pressure full range.


S:

EE			5
----	--	--	---

b) Linear calibration

Set "pressure calibration mode" to "linear calibration" via setting function parameters.

LED panel commissioning setup parameter:

If the state column of linear pressure calibration displays "succeed", and then disappears, it means calibration is succeeded.

0 Nm

R:

2100

0 rpm T:

Monito	Setting	Т	uning 🕨
P. Cal. Linea	r	Su	ucceed
Q. Cal. Linear			
P. Filter			6
Q. Filter			6
P. Full Scale		1	60 Bar
Q. Full Scale		2	50 L/m
Sys Stats: Re	eady (Tech.)	P:	0.0
S: 0	T: 0	R:	2100

If the state of linear pressure calibration failed, the operator will need to calibrate again until succeed.

LED panel commissioning setup parameter:

The calibration of full range is the same with zero position calibration mode: change the pressure reference of upper PC to full range pressure value, and change the pressure calibration point to "full range", then adjust the pressure of injection molding machine to the corresponding pressure of full range, finally, calibrate and confirm.

LED panel commissioning setup parameter:

8			8	8
---	--	--	---	---

c) Polyline calibration

The polyline calibration mode is the same with linear calibration; the operator can deem the polyline calibration as the composition of multi-step linear calibration.

Set the "pressure calibration mode" to "polyline calibration" via setup mode of function parameters.

Monito	Setting	Tuning)
Drive Type		CT-7501-A-0
Motor Type		U1004F.15.3
Pump Type P. Sensor Ze	-	ETTIMA 28mL/r
P. Cal. Mode		Nonlinear
Q. Cal. Mode		Linear
Sys Stats: Re	ady (Tech.	.) P: 0.0
S: 0	T: 0	R: 2100

LED panel commissioning setup parameter:

Stop the highlighted cursor at the polyline pressure calibration via and key, then press key to enter polyline pressure calibration point selection interface.

Monito	Setting	Т	uning 🕨	
P. Cal. nonlin	ear			
Q. Cal. Linear	r			
P. Filter		6		
Q. Filter		6		
P. Full Scale	1	60 Bar		
Q. Full Scale 250 L/m			50 L/m	
Sys Stats: Re	eady (Tech.)	P:	0.0	
S: 0	T: 0	R:	2100	

Adjust the pressure reference of injection molding machine to Obar before performing below operations.

Stop the cursor at polyline pressure calibration point selection via		key,	and a	djust the
item name to "00" (namely "0bar" pressure reference) via (and) key.			

Stop the highlighted cursor at "save" via $\textcircled{\blacktriangleta}$ and $\fbox{\blacktriangleta}$ key.

Paramete	r Settings
P. Cal. nonlinear	
P. Analog Input	3.72 V 0.327 A
Nonlinear 00	0% 0Bar
Save	Cancel
Sys Stats: Ready (T	ech.) P: 0.0
S: 0 rpm T:	0 Nm R: 2100

Press to return to setup mode menu, if the state column of polyline pressure calibration displays "succeed", and then disappears, it means the calibration is succeeded.

Monito	Setting	Tuning)
P. Cal. nonlin	near	Succeed
Q. Cal. Linea	ır	
P. Filter		6
Q. Filter		6
P. Full Scale		160 Bar
Q. Full Scale		250 L/m
Sys Stats: R	eady (Tech.)	P: 0.0
S: 0	T: 0	R: 2100

If the state of polyline pressure calibration is "failed", the operator needs to calibrate again until succeeded.

LED panel commissioning calibration setup parameter:

The calibration mode of other calibration points is the same with 0bar point calibration (refer to the table below), adjust the upper PC to the corresponding pressure reference value.

No.	Calibration quantity (relation with full range)
0	0%
1	5%
2	10%
3	20%
4	30%
5	40%
6	50%
7	60%
8	70%
9	80%
10	90%
11	95%
12	100%

9.2.8 Flow Calibration

The calibration for "single pump", "composite", "multi-mode" and "multi-pump" differs from each other slightly:

- Single pump type: Calibrate directly regardless of "network enable" [P00] parameter.
- Composite and multi-mode type;

First, disable the "network enable" [P00] under "multi-pump" menu, then calibrate each node according to the calibration mode of single pump system.

Multi-pump type:

The "max flow" of each node has been set properly during 9.2.8 pressure calibration, the max system flow equals to the sum of the max flow of each node. Users do not need to set "max flow" during flow calibration.

Modify "operation enable" [H00] item to "disable" state, (in multi-pump type, change the "drive enable" item to "disable" state)

1) Filter adjustment [F09]

The method is the same with 9.2.8(1)

- 2) Calibration
 - a) Set the max flow and flow full range [F13][F11] The method is the same with 9.2.8(2)(a)

- Linear calibration zero position calibration[E09], full range calibration[E10] b) The method is the same with 9.2.8(2)(b)
- c) Polyline calibration [F07] The method is the same with 9.2.8(2)(c)
- 3) Parameter programming

For above parameter setup, parameter programming must be executed before the drive is powered off, otherwise the drive will maintain the original parameter. The parameter programming mode is executed based on 9.2.5.

9.2.9 Pressure-hold Test

1) Pressure-hold test in low pressure

Adjust the overflow pressure of the overflow valve to the max value before performing below operations.

Under commissioning mode, when the control mode is "process mode", stop the highlighted cursor at

"process command mode" via () and () key, and press () to enter setup interface.

Monitor	Setting	Tuning
Speed given		0 r/m
Process		Analog input
instruction mode 0.0 L/n		
Q. Command 0.0 Bar		
P. Command		
Sys Stats: Re	eady (Tech.)) P: 0.0Bar
S: 0 rpm	T: 0 Nr	m R: 2100

Change the name of process command mode to "communication input" via $[\bigstar]$ and $[\blacktriangledown]$ key

Stop the highlighted cursor at "save" via 🔄 and 🕩 key, then press confirm key to return to commissioning menu column, and users can read that the "process command mode" has been changed to "communication mode".

Parameter Settings		
Process instruction	mode	
Communications input		
Save Cancel		
Sys Stats: Ready (Te S: 0 rpm T: 0	ech.) P: 0.0 0 Nm R: 2100	

LED panel commissioning setup parameter:

Adjust "flow reference" [H07] to 10L/m; adjust "pressure reference" [H08] to 20bar and adjust "operation enable" [H00] item to "enable" state.

Check whether oil circuit leakage occurred, and whether the pressure feedback value [d09] in HMI and the pressure gauge of injection molding machine is 20bar.

2) Pressure-hold test in high pressure

After pressure-hold test in low pressure is passed, users can carry out pressure-hold test in high pressure. When "operation enable"[H00] is in "enable" state, the "flow reference" [H07] is based on the 80% of the max flow of the injection molding machine system, "pressure reference" [H08] rises gradually to the max pressure needed by the injection molding machine, observe the system actual pressure [d09] and motor speed[d07].

If the actual system pressure cannot reach the set pressure, users need to check whether abnormal leakage occurred to the hydraulic pressure oil circuit.

If the actual system pressure reaches the set pressure but the average motor speed is higher than the value recommended in the table, users will need to figure out the leakage cause:

Situation 1: Abnormal leakage occurred to the oil pump;

Situation 2: Abnormal leakage occurred to the hydraulic pressure oil circuit;

Situation 3: Leakage occurred to the overflow valve.

Measurement Definition	Pass The Standard (Recommended Value)
Motor speed during pressure-hold	60-100rpm (plunger pump)
(pressure reference 100%FS,	<150rpm (screw pump)
pressure-hold time is 5s)	<300rpm (gear pump)

After confirming the pressure and motor speed during pressure-hold fulfill requirements, check according to the data in the table whether the pressure fluctuation comply with system requirements.

Measurement Definition	Pass The Standard (Recommended Value)
Pressure fluctuation (pressure reference 100%FS, pressure-hold time is 5s)	≤3bar (plunger pump) ≤2bar (screw pump) ≤3bar (gear pump)

9.2.10 Calibration of Overflow Valve

When "operation enable" [H00] is in "enable" state, "flow reference" [H07] is set to 30% of the max flow of injection molding machine system, "pressure reference" [H08] is overflow valve protection pressure used to adjust the overflow pressure of overflow valve. When the actual pressure is larger than the overflow valve protection pressure, confirm the overflow valve can be opened for discharge.

9.2.11 Calibration Review

Set the "pressure reference" [H08] of upper PC to 2bar, 10bar, 50bar, 100 bar, full range pressure -2bar and full range pressure respectively. Observe whether the read-out of pressure gauge complies with the setting, and if not, perform pressure calibration again.

Set the "flow reference" [H08] of upper PC to 2%, 50%, 98% and 100% respectively, and observe if the motor speed during operating is in proportion to the hydraulic pressure oil flow of the injection molding machine (measure by the hydraulic pressure motor speed or injection cylinder speed), if not, perform flow calibration again.

9.2.12 Automatic Operation and System Performance Adjustment

1) System restart

After switching off the system power, repower-on and the drive uses IO enable signal to turn on the operation enable, carry out reverse operation based on the disable mode specified in 9.2.1(3).

Restart system power and after confirming the servo system is in working state, handover the control right to the injection molding machine drive to control the servo system operation according to the injection molding machine parameters.

2) Servo performance adjustment

Servo system process control includes the following gain parameters, by which users can adjust the response features and stability precision of the servo system.

Set during single pump or shunt application:

Pressure proportional gain 0-3, [E17] [F22] [F25] [F28]

Pressure integral gain 0-3, [E18] [F23] [F26] [F29]

Set during converging application:

Multi-pump pressure proportional gain 0-3: [P09] [P12] [P15] [P18]

Multi-pump pressure integral gain 0-3: [P10] [P13] [P16] [P19]

Speed proportional gain, [E19]

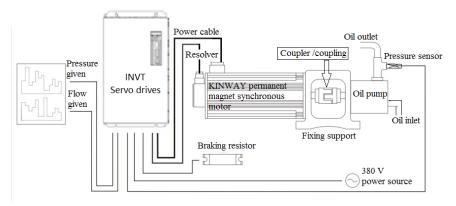
Speed integral gain, [E20]

When finishing motor and pump model selection, the drive has selected the matching value of the motor and pump. If the system performance indicator cannot reach customer requirements, fine tune above parameter values until the requirements are fulfilled.

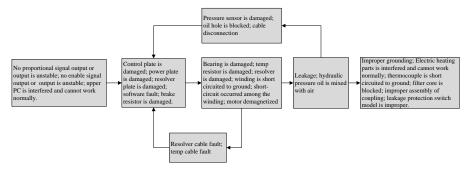
Chapter 10 Alarm and Solution

10.1 Protection Display List

The servo drive carries multiple alarms and protection function including overvoltage and overcurrent. Once abnormal fault occur, the protection function acts, servo drive stops output and motor stops running. Users can cope with faults according to the contents displayed by the servo drive while referring to fault causes and solutions. The fault records will be stored in the memory of the servo drive, which can record the latest five abnormal alarms and the time of occurrence, which can be checked by users via digital LED operation panel or HMI communication.


Code	Protection Item	Meaning	Code	Protection Item	Meaning
Err01	IPM fault	Short-circuit current passes power module transiently	Err02	Overcurrent	Output current exceeds the allowed operating current of the drive
Err03	DC overvoltage	Main circuit DC voltage is abnormally high	Err04	DC undervoltage	When motor is powered on for operation, the main circuit DC voltage drops below the protection value
Err05	FWD overspeed	The FWD speed of servo motor is abnormally high	Err06	Module over-temperature	The cooling fin of the servo drive is too hot
Err07	Motor over-temperatu re	Servo motor winding is too hot	Err08	Software fault	Servo drive software operates abnormally
Err09	CAN fault	When process command is CAN continuous or multi-pump parallel application, CAN communication is abnormal and the drive reports this fault	Err10	Environment over-temperature	The air temperature inside the drive is too high
Err11	Self-inspection fault	Internal hardware of the drive is abnormal	Err12	Task re-entry	Software program calling error
Err13	Over-pressure of oil pressure	The pressure of oil pressure system exceeds the allowed value	Err14	REV overspeed	During process control mode, overspeed occurred to motor reverse rotation
Err15	Pressure sensor fault	Pressure sensor is wired improperly or	Err16	Brake resistor is damaged	Brake resistor is not connected or damaged

Code	Protection Item	Meaning	Code	Protection Item	Meaning
		damaged			
Err17	AC overvoltage	Input AC voltage is too high	Err18	EEPROM fault	Servo unit EEPROM data abnormal
Err19	Enable undervoltage	When the motor starts to power on, the main circuit DC voltage is too low	Err20	AC undervoltage	Input AC voltage is too low
Err21	Brake overload	Brake resistor overload and cause overheating	Err22	Node fault	During multi-pump parallel application, the slave node is faulty, main drive will report this fault
Err23	Rectification unit fault	The detection value of AC voltage and DC voltage does not match	Err24	Power-on overtime	Power-on relay closing overtime
Err25	485 communication fault	When process command mode is 485 continuous, 485 communication is abnormal and the drive reports this fault	Err26	Current feedback channel fault	Current zero drift is too large
Err27	Incremental encoder zeroing interruption fault	Encoder zeroing detection is interrupted	Err28	Incremental encoder zeroing overtime fault	Encoder zeroing detection is overtime
Err29	Incremental encoder zeroing operation fault	Incremental encoder zeroing operation fault	Err30	Motor initial angle test interruption fault	Static test on motor D axis initial angle is interrupted
Err31	Resolver fault	Resolver line is not connected or resolver plate is faulty	Err33	Resolver sampling fluctuation fault	Resolver sampling value fluctuates violently
Err34	A phase current sampling fluctuation is too large	A phase current sampling fluctuation is too large	Err35	B phase current sampling fluctuation is too large	B phase current sampling fluctuation is too large


Code	Protection Item	Meaning	Code	Protection Item	Meaning
	A phase current	A phase current		B phase current	B phase current
Err36	sampling zero	sampling zero drift is	Err37	sampling zero	sampling zero drift is
	drift is too large	too large		drift is too large	too large
	DC voltage			Pressure	
	sampling	DC voltage sampling		feedback	Pressure feedback
Err38	fluctuation is	fluctuation is too large	Err39	sampling	sampling fluctuation is
	too large	nucluation is too large		fluctuation is too	too large
	too large			large	
	Pressure			Pressure	
	feedback	Pressure feedback		reference	Pressure reference
Err40	sampling zero	sampling zero drift is	Err41	sampling	sampling fluctuation is
	drift is too large	too large		fluctuation is too	too large
				large	
	Flow reference			Ambient	
	sampling	Flow reference		temperature	Ambient temperature
Err42	fluctuation is	Sampling fluctuation is	Err43	sampling	sampling fluctuation is
	too large	too large		fluctuation is too	too large
	too largo			large	
	Module			Motor	
	temperature	Module temperature		temperature	Motor temperature
Err44	sampling	sampling fluctuation is	Err45	sampling	sampling fluctuation is
	fluctuation is	too large		fluctuation is too	too large
	too large			large	
					Motor pole pairs is
	Encoder initial	Encoder initial angle		Phase sequence	calculated wrong,
Err49	angle test fault	test current does not	Err50	test fault	speed limit value is
		follow, overtime, etc.			invalid, current does
					not follow, overtime
		Current does not			Large speed error,
Err51	Motor resistor	follow, overtime,	Err52	Motor parameter	current does not follow,
_	test fault	resistor test value is	-	dynamic test fault	large load, overtime,
		invalid			test value is invalid
					If fault occurred during
	Motor	The calculation result		Diagnosis	executing diagnosis
Err53	parameter			interruption fault	action, the drive will
	static test fault				stop diagnosis and
			l		display Err54 fault

10.2 Analysis on Fault Source

As shown below, the electro-hydraulic servo system of KINWAY injection molding machine is mainly comprised of permanent magnet synchronous motor, motor rotor position/speed sensor (resolver), servo drive, the oil pump which is coaxially connected to the servo motor and the pressure sensor used to detect system oil pressure.

Strictly speaking, all the parts displayed in above figure (connection cables included) can be deemed as the fault source. The figure below shows the layout of system fault:

The fault layout aims to assist users in analyzing the system in a comprehensive manner to figure out the fault source quickly and accurately.

10.3 Protection Causes and Solutions

If alarm code fault occurred, the panel will display the fault code which can be handled as shown below. If the problem persists, contact the distributor or the service department of our company. The first group of fault:

Fault Code	Protection Item	Cause	Solution
Err01		The U, V and W used by the motor main	Check the wiring and connect correctly Correct or replace the cable used by motor main circuit Check the wiring and connect correctly Replace the drive Replace the servo motor
		are improper or affected by peripheral heating	Reset parameters Lower the ambient temperature of the servo unit to below 45°C

The second group of faults

Fault Code	Protection Item	Cause	Solution
		Motor wiring is abnormal (improper wiring or connection)	Correct motor wiring
Err02 Overcurrent	Position sensor wiring is abnormal (improper wiring or connection)	Correct position sensor wiring	
		Servo drive fault	Replace the servo drive
		AC power voltage is too high	Adjust the AC newsry voltage to
F 00		Check AC power voltage (whether there is large voltage variation)	Adjust the AC power voltage to normal range
Err03 Err17	DC overvoltage AC overvoltage	The speed is too high, load rotation inertia is too large (regenerative brake capacity is insufficient)	Re-discuss load conditions and
		Servo drive fault	Replace the servo drive

The third group of fault:

Fault Code	Protection Item	Cause	Solution
Err04	DC undervoltage	AC power voltage is low (whether	Adjust the AC power voltage
Err20	AC undervoltage	there is large voltage drop)	to the normal range

Fault Code	Protection Item	Cause	Solution
Err19	Enable	Transient power off occurred	Restart running via reset
	undervoltage	The cable used by motor main	Correct or replace the cable
		circuit is short circuited	used by motor main circuit
		Servo drive fault	Replace the servo drive
		AC voltage and DC voltage	Re-calibrate DC voltage or AC
Frr23	Rectification unit	detection is erroneous	voltage
EIIZS	fault	Rectification unit problem	Replace rectification drive
			plate or the drive
		The U, V and W phase sequence of motor wiring is wrong	Correct motor wiring
Err05	FWD overspeed;	Position sensor wiring is wrong	Correct position sensor wiring
Err14	REV overspeed	Mal-operation occurred to position	Take anti-interference
		sensor due to interference	measures
		Servo drive circuit plate fault	Replace the servo drive
			Re-discuss load condition,
	Madula	The load exceeds rated load	operation condition or motor
	Module		capacity
Err06	over-temperature;	The ambient temperature of servo	Lower the ambient
Err07	Motor	system exceeds 55°C	temperature of the servo unit
Err10	Environment	system exceeds 55 C	to below 55°C
	over-temperature	Servo motor temperature sensor is	Correct motor temperature
	over-temperature	wired wrong	sensor wiring
		Servo drive fault	Replace servo drive

The fourth group of fault

Fault Code	Protection Item	Cause	Solution
Err08	Program run out fault	Interfered by static electricity lightening stroke	Reset and run again
Err11	Self-inspection	Motor position sensor is abnormal	Replace the motor
EILI	fault	Servo drive fault	Replace the servo drive
Err12	Software fault	Servo drive fault	Replace the servo drive
		Pressure sensor is wired wrong	Correct pressure sensor wiring
	Overpressure of	Pressure sensor is abnormal	Replace pressure sensor
Err13	Overpressure of oil pressure	Commissioning of oil pump control and speed control parameters is improper	Adjust the control parameters to a proper value

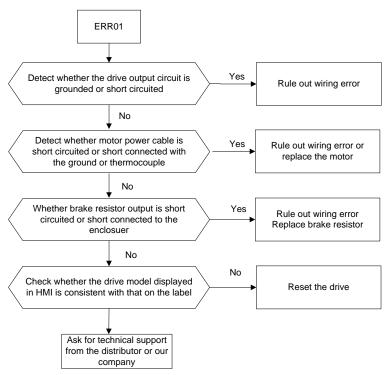
The fifth group of fault:

Fault Code	Protection Item	Cause	Solution
	Pressure	Pressure sensor wiring is wrong	Correct pressure sensor wiring
Err15	sensor fault	Pressure sensor is abnormal	Replace pressure sensor
	Sensor lault	Servo drive fault	Replace the servo drive
		The rotary energy when PB stops exceeds the capacity of DB resistor	Re-select the capacity of regenerative resistor or re-discuss load conditions
Err16	Brake resistor is damaged	Check whether regenerative resistor is wired improperly, disconnected or broke	Correct the wiring of external regenerative resistor
		Servo drive fault (regenerative transistor, voltage detection fault)	Replace the servo drive
		Power is off during parameter setting	Re-enter parameters after
Err18	EEPROM is	Power is off during writing fault code	restoring to default values
LIIIO	damaged	Servo drive EEPROM and peripheral circuit fault	Replace the servo drive
Err21	Brake resistor overload	The motor is in power generation state or starts/stops frequently in a long time	Adjust the motor running condition or replace with a power brake resistor which carries larger power
	Current	Interference is large	
Err26	feedback channel fault	Current sensor is damaged	Eliminate the interference
Err31	Resolver fault	Resolver is not connected or poorly contacted	Detect the resolver wire and resolver plate
		Resolver plate fault	

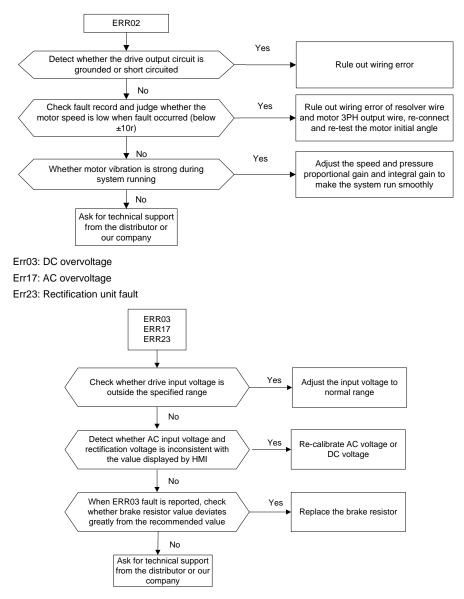
The sixth group of fault

Fault Code	Protection Item	Cause	Solution
Err33	Resolver sampling	Interference or resolver plate is	Eliminate the interference and
LIISS	fluctuation fault	damaged	replace the resolver plate
	A phase current	Interference	Eliminate interference, current
Err34	sampling fluctuation	Current sensor is damaged	Eliminate interference, current
	is too large	Control plate is damaged	sensor, replace control plate
	B phase current	Interference	
Err35	sampling fluctuation	Current sensor is damaged	Eliminate interference, current
	is too large	Control plate is damaged	sensor, replace control plate
Err36	A phase current	The same with above	The same with above

Fault Code	Protection Item	Cause	Solution
	sampling zero drift is too large		
Err37	B phase current sampling zero drift is too large	The same with above	The same with above
Err38	DC voltage sampling fluctuation is too large	Interference Control plate is damaged	Eliminate interference, replace the control plate
Err39	Pressure feedback sampling fluctuation is too large	Interference Pressure sensor is damaged Control plate is damaged	Eliminate interference, replace pressure sensor and control plate
Err40	Pressure feedback sampling zero drift is too large	Interference Pressure sensor is damaged Control plate is damaged System has pressure	Eliminate interference, replace pressure sensor and control plate, system pressure discharge
Err41	Pressure reference sampling fluctuation is too large	Interference Analog signal reference of upper PC fluctuates violently Control plate is damaged	Eliminate interference, detect the analog signal reference of upper PC, replace the control plate
Err42	Flow reference sampling fluctuation is too large	The same with above	The same with above
Err43	Ambient temperature sampling fluctuation is too large	Interference Control plate is damaged	Eliminate interference, replace the control plate
Err44	Module temperature sampling fluctuation is too large	The same with above	The same with above
Err45	Motor temperature sampling fluctuation is too large	The same with above	The same with above

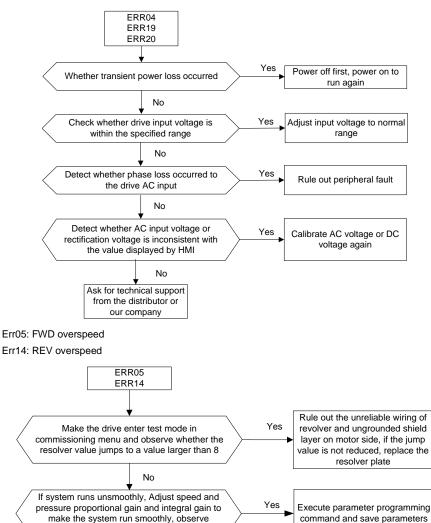

The seventh group of fault

Fault Code	Protection Item	Cause	Solution
Err49	Encoder initial angle	Current sensor is damaged	Detect the drive, connect the
Err49	test fault	Motor is not connected	motor
	Dharan	Current sensor is damaged	Re-enter motor nameplate
Err50	Phase sequence	Motor nameplate parameter	parameters, detect the drive,
	test fault	input is erroneous	connect the motor


Fault Code	Protection Item	Cause	Solution
		Motor is not connected	
Err51	Motor resistor test	Current sensor is damaged	Detect the drive, connect the
	fault	Motor is not connected	motor
Err52		Current sensor is damaged	Detect the drive, re-enter
	Motor parameter	Positions sensor fault	motor nameplate parameter,
	dynamic test fault	Load is too large	apply no-load or light-load on
		Parameter value is invalid	the motor
Err53	Motor parameter	Parameter value is invalid	Re-enter motor nameplate
	static test fault		parameters

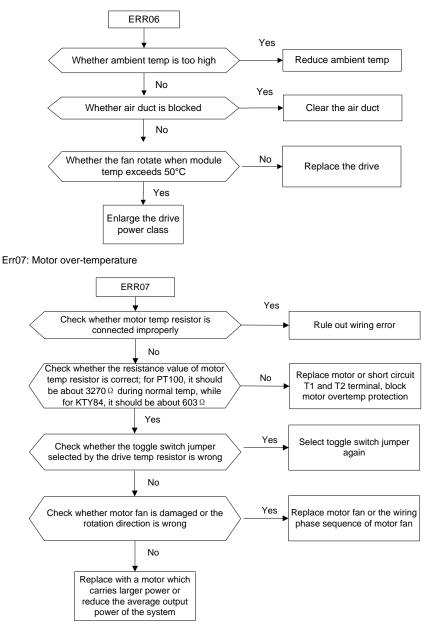
10.4 Fault Rule-Out Flowchart

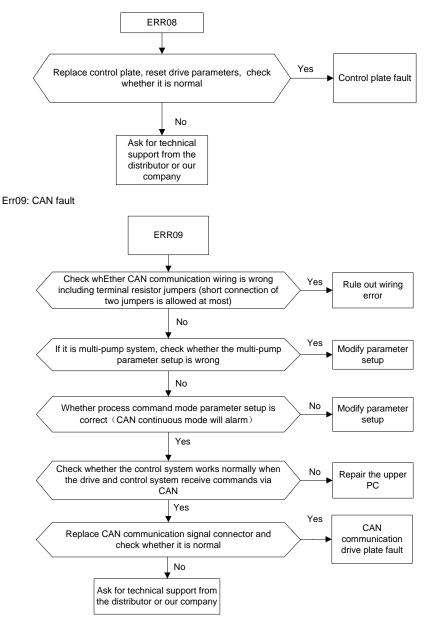
Err01: IPM fault



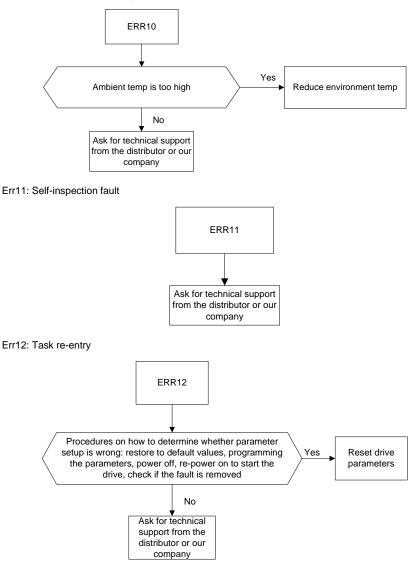
Err02: Overcurrent

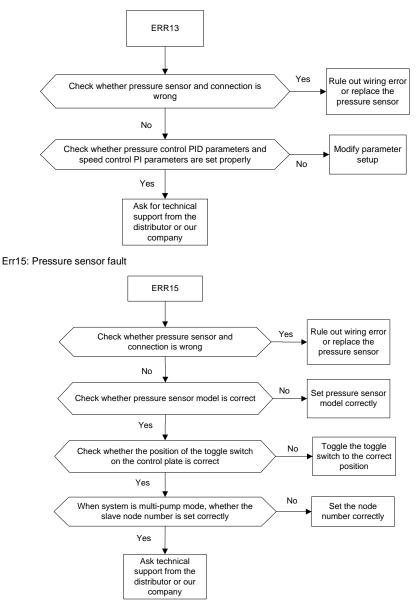
Err04: DC undervoltage

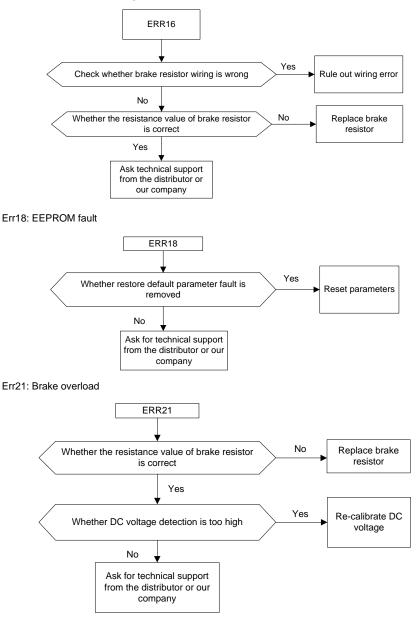

- Err19: Enable undervoltage
- Err20: AC undervoltage

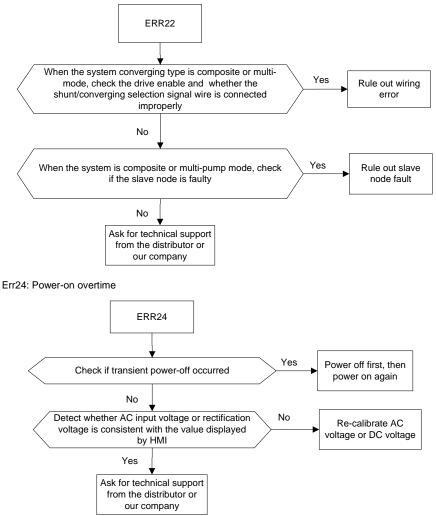

whether the fault does not occur any more

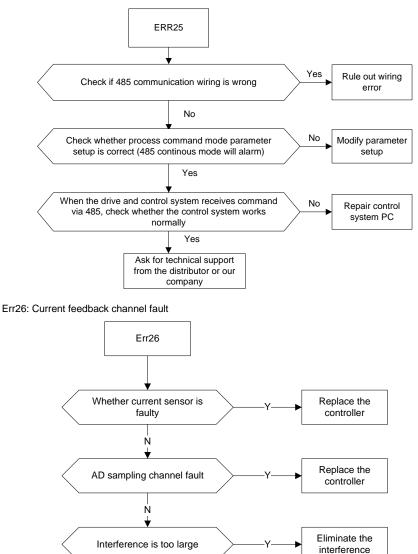
Ask for technical support from the distributor or our company

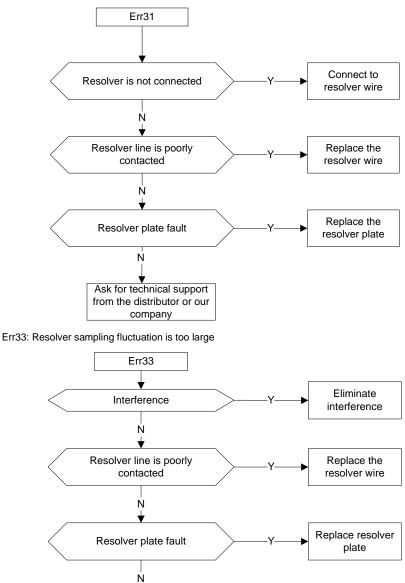

Err06: Module over-temperature


Err08: Software fault


Err10: Environment over-temperature


Err13: Over-pressure of oil pressure

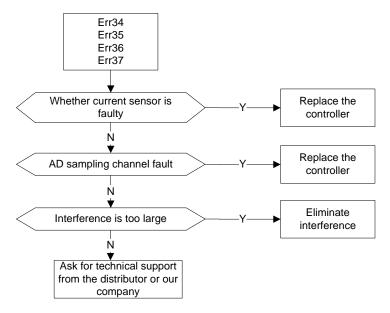

Err16: Brake resistor is damaged



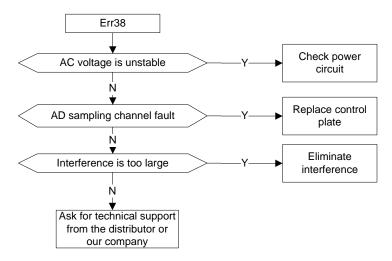
Err25: 485 communication fault

Ask for technical support from the distributor or our company

Err31: Resolver fault

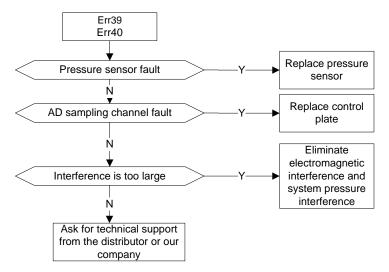


Ask for technical support from the distributor or our company Err34: A phase current sampling fluctuation is too large

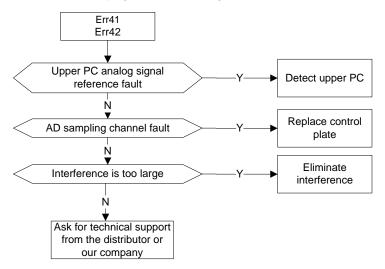

Err35: B phase current sampling fluctuation is too large

Err36: A phase current sampling zero drift is too large

Err37: B phase current sampling fluctuation is too large

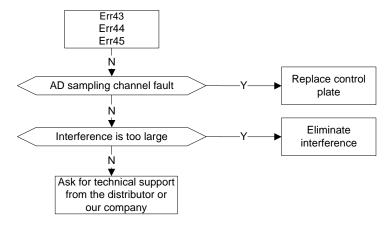


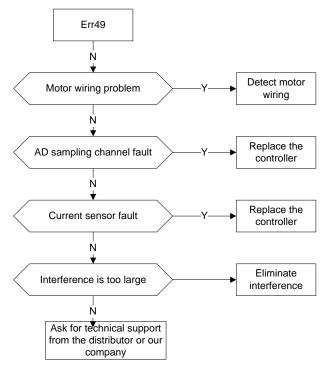
Err38: DC voltage sampling fluctuation is too large


Err39: Pressure feedback sampling fluctuation is too large

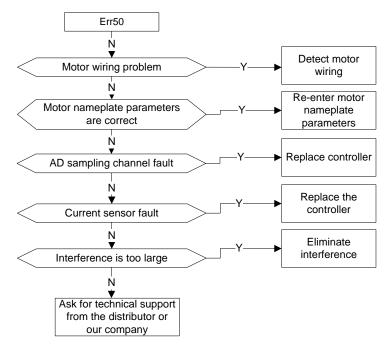
Err40: Pressure feedback sampling zero drift is too large

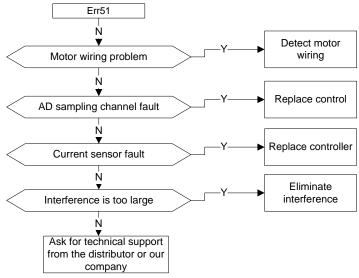
Err41: Flow reference sampling fluctuation is too large

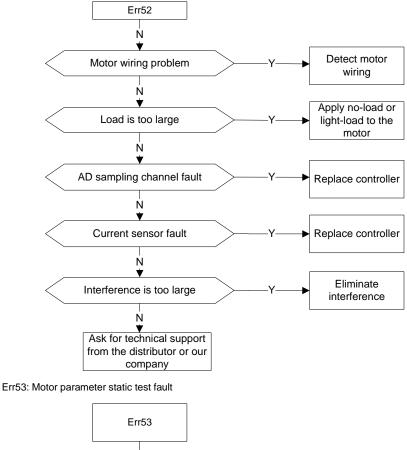

Err42: Pressure reference sampling fluctuation is too large

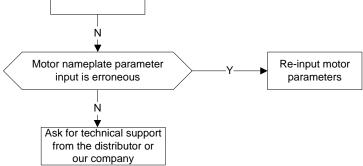

Err43: Environment temperature sampling fluctuation is too large

Err44: Module temperature sampling fluctuation is too large


Err45: Motor temperature sampling fluctuation is too large


Err49: Encoder initial angle test fault


Err50: Phase sequence detection fault



Err51: Motor resistor test fault

Err52: Motor parameter dynamic test fault

Chapter 11 Maintenance and Inspection

To avoid the danger of electric shock, only the maintenance staff who have received professional training are allowed to touch the internal circuit parts. Proper maintenance and periodic inspection is required for keeping the serve electro-hydraulic control system of injection molding machine in a good state in a long term.

11.1 Precautions

After cutting off all the power supplies, the capacitors inside the drive may still carry high voltage electricity during a period of time; therefore, after electric discharge, it is a must to measure with multimeter the voltage of U+ and U- terminals to ensure they are below 36V.

11.2 Inspection Items

Method And Item Description Criterion Instruments Fulfill the Ambient temperature, humidity, Visual examination. Ambient requirements dust level, dust component, oil thermometer and environment specified in the and acid and alkaline fog, etc. hygrometer operation manual Whether the voltage of power Fulfill the supply is normal requirements Voltmeter. Power voltage Whether power-on logic action multi-meter specified in the (contactor, air switch, etc.) is operation manual normal Whether there is abnormal vibration, noise, deformation and damage Screw up the screws; Cosmetic and Visual inspection; Abnormal Whether external brake resistor parts inspection connection is loosened, resistor is Multimeter aged, or resistance value is normal No abnormal odor Whether cooling fan rotates normally Whether connectors are loosened Smell, listen and Normal Circuit inspection Whether the lead wires are observe damaged Whether filter capacitors are deformed or there is leakage liquid

The items to be inspected periodically are listed below:

11.3 Tramegger Test

The tramegger test can be used to test the insulation between motor winding and the enclosure only, and it must be ensured that all the connections between the motor and servo drive have been disconnected before test. 1000V tramegger should be adopted for test and the insulation resistor should be larger than $50M\Omega$.

Improper insulation test method may damage the servo drive, users should not perform insulation test by themselves.

11.4 Replacement of the Parts

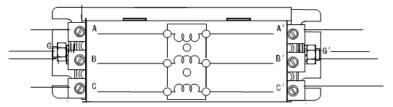
The service life of the bearing of cooling fan is about 30,000h, which can sustain about 3 - 4 years during continuous usage. If abnormal noise and vibration occurred to the fan, a replacement will be required.

Service life of the aluminum electrolytic capacitor used for filter will be shortened after long-term idleness; therefore, users should power on and run the servo drive at an interval of at least half a year.

Chapter 12 Accessories

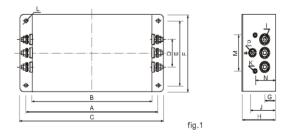
12.1 Accessories Model List

Name	Model	Application						
	DL-35EBK5	4R4/5R5						
	DL-50EBK5	7R5/011/015						
F 11	DL-65EBK5	018/025						
Filter	DL-100EBK5	030/037						
	DL-130EBK5	045/055						
	DL-160EBK5	075						
	ACL2-5R5-4	4R4/5R5						
	ACL2-015-4	7R5/011/015						
	ACL2-022-4	018/025						
AC reactor	ACL2-037-4	030/037						
	ACL2-055-4	045/055						
	ACL2-075-4	075						
	40Ω, 500W	4R4/5R5/7R5/011						
	15Ω, 500W	015/018/025						
	10Ω, 2000W	030/037						
Brake resistor	10Ω, 2000W (2pcs connected in parallel)	045/055						
	30Ω, 2000W (2pcs connected in parallel)	075						
Brake unit	DBU100H-060-4	075						
Pressure sensor	U5176-000005-250BG							
Current junction box		During refit, if the output signal of master PC is current signal, it is necessary to convert it to voltage type with junction box						
External HMI commissioning panel	H038-HA	Commissioning tool						


12.2 Noise Filter

(1) The noise filter models for each drive type

Osmus Drive Madel	Noise Filter					
Servo Drive Model	Model	Specification				
SV-MH800-4R4-33-S00		254 200 - 5				
SV-MH800-5R5-33-S00	DL-35EBK5	35A,200nF				


Servo Drive Model	Noise Filter					
Servo Drive Model	Model	Specification				
SV-MH800-7R5-33-S00						
SV-MH800-011-33-S00	DL-50EBK5	50A,320nF				
SV-MH800-015-33-S00						
SV-MH800-018-33-S00	DL-65EBK5	65A,320nF				
SV-MH800-025-33-S00	DL-65EBK5	65A,320nF				
SV-MH800-030-33-S00	DL-100EBK5	100A,320nF				
SV-MH800-037-33-S00	DL-100EBK5	100A,320nF				
SV-MH800-045-33-S00	DL-130EBK5	130A,690nF				
SV-MH800-055-33-S00	DL-130EBK5	130A,690nF				
SV-MH800-075-33-S00	DL-160EBK5	160A,690nF				

(2) Filter terminal definition

Mark	Definition
А	
В	Input 3PH power
С	
G	Input power ground
A'	
B'	Output 3PH power
C'	
G'	Output power ground

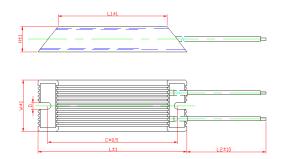
(3) Filter model dimension (mm)

Model	Α	В	С	D	Е	F	G	н	I	J	κ	М	Ν	Ρ	L
DL-35EBK5															
DL-50EBK5	243	224	265	58	70	102	25	92	M6	58	M4	74	49	M6	6.4×9.4
DL-65EBK5															
DL-100EBK5															
DL-130EBK5	354	323	388	66	155	188	30	92	M8	62	M4	86	56	M8	6.4×9.4
DL-160EBK5															

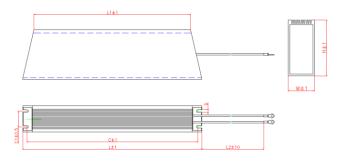
Fix the noise filter in a well-ventilated place with bolts. The grounding terminal of input and output must be connected to the system ground in a reliable way. See <u>4.6.6</u> for connection modes.

12.3 Brake Resistor Model Selection and Installation

Comus Drive Madel	Brake Res	Brake Unit			
Servo Drive Model	Resistor Value Ω	Power W	Specification		
SV-MH800-4R4-33-S00	40	500			
SV-MH800-5R5-33-S00	40	500			
SV-MH800-7R5-33-S00	40	500			
SV-MH800-011-33-S00	40	500			
SV-MH800-015-33-S00	15	500			
SV-MH800-018-33-S00	15	500			
SV-MH800-025-33-S00	15	500	Built-in brake unit		
SV-MH800-030-33-S00	10	2000			
SV-MH800-037-33-S00	10	2000			
CV/ MUROO 045 22 COO	F	4000 (2pcs 10Ω/2000kW	-		
SV-MH800-045-33-S00	5	connected in parallel)			
SV-MH800-055-33-S00	5	4000 (2pcs 10Ω/2000kW			
3V-IVIN000-000-33-300	5	connected in parallel)			
SV-MH800-075-33-S00	15	4000 (2pcs 30Ω/2000kW			
31-10100-075-33-300	15	connected in parallel)	DBU100H-060-4		


1) The reference table for brake resistor and brake unit

Built-in brake unit is in included for servo drives of 55kW and below; for 75kW and above models, users need to install external brake unit. As the drive does not carry brake resistor, external brake resistor is a must. If the motor brakes frequently and brake resistor of larger power is needed, users can select the brake resistor which carries small resistance value and large power during ordering. External brake resistor should be installed in a well-ventilated place and away from combustible objects and non-heat resistant parts.


When users select the external brake resistor by themselves, note that the resistance value cannot be lower than the specified value; otherwise the drive may be damaged.

2) Brake resistor dimension (mm)

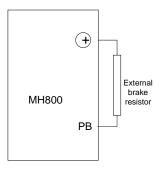
Brake resistors RXLG-500W-40R and JRXLG-500W-15RJ with aluminum case (used in 4R4/5R5/7R5/011/015 drive) are shown below:

Brake resistors RXLG-2000W-10RJ with aluminum case (used in 030/037 drive, used in 045/055 drive with 2pcs connected in parallel) and RXLG-2000W-30RJ (used in 075 drive with 2pcs connected in parallel) are shown below:

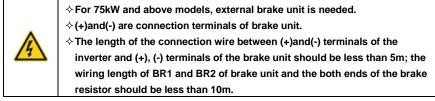
Model	L	L1	w	н	с	C1	D	L2	
RXLG-500W-15R J	335	290	60	30	315		5.6	1000	
RXLG-500W-40R J	000	200			0.0		0.0		
RXLG-2000W-10R J	550	550	510	50	107	530	30.5	5.5	1000
RXLG-2000W-30R J		510	50	107	550	30.5	5.5	1000	

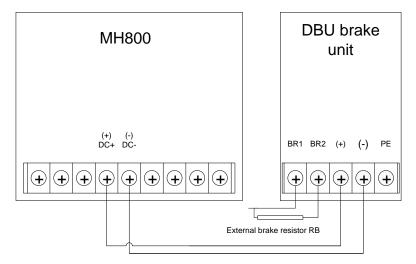
3) Installation and layout of brake resistor

All the resistors must be installed in well-cooled places.

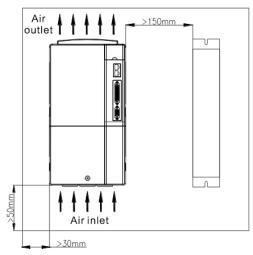


♦ The materials surrounding the brake resistor/brake unit must be fire-retardant. The surface temperature of the resistor is very high, which cause the temperature of the air flowing above the resistor to reach hundreds of centigrade; therefore, the materials must be prevented from contacting the resistor.

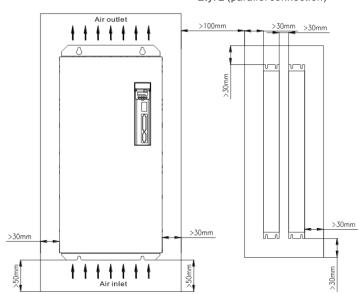

Installation of the brake resistor:


For 55kW and below models, only external brake resistor is needed.
 PB and(+) are the cable terminals of the brake resistor.

Installation of brake unit:



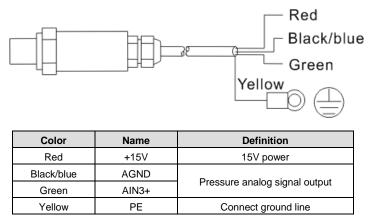
Connection of single unit is shown below:



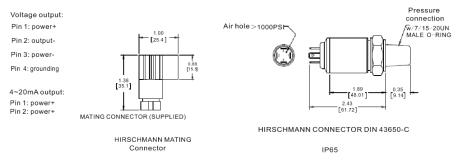
a) SV-MH800-4R4/5R5/7R5/011/015/018/025/030/037 drive and brake resistor layout (mm)

Spec.: 500W 40Ω Qty: 1

b) Layout of SV-MH800-045/055/075 drive and brake resistor (mm)



Spec.: 2000W 30Ω Qty: 2 (parallel connection)


162

12.4 Pressure Sensor

1) Pressure sensor terminal

2) Dimension and installation of pressure sensor

Teflon tape should be used when pressure sensor is connected to oil circuit. During installation, screw tight the pressure sensor to prevent leakage.

12.5 External HMI Options

Refer to 5.1 External HMI Display and Operation for details.

Chapter 13 Contact Us

INVT Industrial Technology (Shanghai) Co., Ltd.

Address: Building No. 1, No. 188, Xinjun Ring Road, Pujiang Hi-tech Park, Shanghai

Postal code: 201114

Tel.: +86-21-34637660

Fax: +86-21-34637667

Website: www.invt-tech.com

Shengze Office

Address: No. 126, Building No. 16, Xujing Garden, Shengze Town, Wujiang City, Jiangsu

Tel.: +86-512-63537191 Fax: +86-512-63537191

South China Office

Address: 6F,5# Building, Gaofa Industrial Park, Longjing, Nanshan District, Shenzhen, China

Tel.: +86-755-26966810, 26966997 Fax: +86-755-26966252

Shunde Office

Address: Room 308, Tower B, Zicuixuan, Linglan Garden, Guozhong Road, Daliang, Shunde District, Foshan City, Guangdong Province

Tel.: +86-757-22913340

Fax: +86-757-22913340

Ningbo Office

Address: Room 433, No. 66, Venture Building, Yuanshi Road, Hi-tech Zone, Ningbo City

Tel.: +86-0574-87914636 (switchboard)

Fax: +86-0574-87914638 (fax)

North China Office

Address: Room 2101, Unit 1, Building No. 5, Guohua Classics, No. 30, Jiefang Road, Ji'nan City

Tel.: 0531-81186860

Fax: 0531-88873650

Wuxi Office

Address: Room 1001, Building No. 65, Kuangqiaolijing, Beitang District, Wuxi City, Jiangsu Province

Tel.: 0510-82390516

Fax: 0510-82390516